
science and technology

29

International Circular of Graphic Education and Research, No. 20 2020

Benefits of Cloud Computing in the
Online Printing Industry

Stefan Meissner 1

1 TU Dublin, Dublin, Ireland

Keywords: Cloud Computing Print, MassCustomization Print, Cloud-based Print Production,
 IT-Strategy Print Production

Abstract
The online printing business is moving towards mass customization. This research project is aimed to be an essential research
for the online printing industry in order to underpin this progression. The keys to mass customization are ‘Economies of
Scale’ and ‘Economies of Scope’. This paper elaborates on the backgrounds and leverages of mass customization in the online
printing industry and investigates how the industry can benefit from Cloud Computing. Cloud Computing is a direction in In-
formation Technology (I.T.) that brings applications from local installations into large centralized data centres in order to save
costs, raise flexibility, stability, and sustainability. This publication is conducted by the research question of how to go about
adopting Cloud Computing technologies and architectures in order to design an economical and sustainable Information
Technology (I.T.) infrastructure for the online printing industry? The outcome of this paper is an evaluated design pattern of
how to build and manage cloud services for production lines of online printing companies using cloud computing technolo-
gies. The evaluation and theory extraction is driven by the development of a preview generation cloud service that generates
preview images from PDF files. All sources and artifacts of that service are published on GitHub.com and are referenced and
outlined by this document.

Introduction

When someone asks people about the printing
industry, their first image is most likely about
the heavy printing presses, many piles (or
webs) of paper, or barrels of ink. These are the
typical characteristics of which printing houses
are usually known. However, presses are being
developed and installed by press vendors, while
suppliers deliver the consumables print-ready.
So, the function of printing houses is to bring
all together in order to reproduce customers
artworks visually onto substrates. Today, cus-
tomers normally deliver artwork files digitally.
Once received and processed, printing press-
es consume digital data directly or imposed
on printing plates. The nature of printing has
changed significantly towards Information
Technologies (I.T.) over the last decades. The

industry has digitalized many parts of the print-
ing process. Examples include order manage-
ment and routing, ganging, pre-flight checks,
colour management, rasterization, imposition,
generation of pre-settings for press and finish-
ing, production data acquisition. The number
of file formats involved in the print production
process has also increased considerably. File for-
mats include Portable Document Format (.pdf),
Job Definition Format (.jdf), Print Production
Format (.ppf), Tagged Image File Format (.tiff),
International Color Consortium Profile (.icc) etc.
The number of print specific file formats is an
indicator of how software and I.T. influences the
printing industry. This is particularly relevant
in the online printing industry segment, where
integration and automation are major keys,

science and technology

30

International Circular of Graphic Education and Research, No. 12 2020

printing providers are transforming increasingly
more towards software development compan-
ies - specialized in printing.

This research project is aimed to be an essen-
tial research for the online printing industry in
order to underpin this progression. Along the
technological and structural development in
the printing industry, so too the I.T. business
has experienced notable evolutions. Many
new technologies, concepts, and architectures
have emerged over the last decade. One of the
most critical topics that appeared in this field
is most likely Cloud Computing. When devel-
oping highly integrated and automated print
production systems, a fundamental challenge
is to define the technological and architectural
I.T. framework used for that system. Print pro-
duction systems are usually complex, as many
people, legacy systems, devices, and third-party
applications are involved. Therefore, the focus
of the I.T. framework must be on sustainability,
as complex systems are typically slow-acting.
Sustainability implies that a technology is sup-
ported by a broad community, rather than from
a single vendor only. Furthermore, the technol-
ogy shall be approved by commonly known
real-world projects to have shared experiences,
best practices, and experts by the hand. The au-
thor’s objective is to explore the frontiers of the
technologies and architecture in both the print-
ing industry and Information Technologies. The
result of the publication is the definition and
evaluation of an I.T. framework, which enables
online printing providers to design sustainable
and economic I.T. systems in order to increase
their level of integration and automation. This
publication addresses the following research
question: How to adapt Cloud Computing
technologies and architectures in order to
design an economical and sustainable Infor-
mation Technology (I.T.) infrastructure for

the online printing industry?

Central to this, and supporting this research
is the prototyping of a cloud service for the
generation of preview images. The prototype
is designed as a minimal viable product (MVP)
and is used for the definition and evaluation of
the I.T. framework. Ries (2011) has defined the
concept of a minimal viable product (MVP) as “a
version of a new product, which allows a team
to collect the maximum amount of validated
learning about customers with the least effort.”
Lenarduzzi and Taibi (2016) entitle the MVP as
one of the most critical steps of the Lean Star-
tup methodology, needed to start the learn-
ing process by integrating the early adopters’
feedback as soon as possible. Acknowledging
this, Lenarduzzi and Taibi (2016) outline in
their publication “MVP Explained: A Systematic
Mapping Study on the Definitions of Minimal
Viable Product” how broadly the MVP concept
has been adapted, interpreted and further de-
veloped over time. Maurya (2017), refined the
MVP definition and set the primary focus on the
minimal viability: “A Minimum Viable Product
is the smallest thing you can build that delivers
customer value (and as a bonus captures some
of that value back).” This publication will follow
the stricter definition by Maurya: The prototype
developed in the context of this publication
focuses on a simple preview generation cloud
service and requires to be usable for every-
body. Based on that prototype, the direction
of research and theory extraction is being
conducted. Further, the prototype is used for
evaluation purposes and to ensure the validity
of this publication.

This research is following an inductive ap-
proach. Fisher (2010, p. 109) defines induction
when a conclusion is drawn from experience
or experimentation. In contrast to deduction,

science and technology

31

International Circular of Graphic Education and Research, No. 20 2020

where the conclusion follows in logic the
premises stated in the beginning, he mentions
a risk that inductive arguments may base more
on wishful thinking than on a carefully judged
balance of probabilities. This publication has a
particular focus on that risk in order to pro-
vide an objective view. Fisher (2010, p. 149)
further argues that theories are an attempt to
generalize the findings from specific instances.
Supporting this, Bryman and Bell (2015, p. 19)
stated that the inductive approach is where
the theory is an outcome of the research. The
research strategy applied in this paper is there-
fore clearly a qualitative one. Bryman and Bell
(2015, p. 38) observe a predominant relation-
ship between the inductive approach and the
qualitative research strategy, as the emphasis
is placed on the generation of theories. The
theory generation is also the focus of this pub-
lication. The research design of the publication
will be a case study design. Fisher (2010, p. 69)
differentiates the case study as a design pattern
which focuses on an in-depth understanding of
a situation. Further, he stated, case studies are
giving a holistic account of the subject of the
research by elaborating on the interrelation be-
tween factors such as people, groups, policies,
technologies. According to Bryman and Bell
(2015, p. 67), the case study entails the detailed
and intensive analysis of a single case. This
design pattern is a widely used one in business
research. In contrast to other research designs,
a case study focuses on a bounded situation or
system. As examples, Bryman and Bell (2015, p.
67) list a single organization, a single location,
a person, or a single event. The case treated by
this publication covers a single cloud service for
the generation of preview images.

The publication’s scope covers the I.T. frame-
work for the development of a prepress cloud
service as evaluation as well as the deployment

of the service in a managed environment.
The document introduces the deployment
models of cloud environments; however, for
the evaluation, the publication assumes that
a cloud environment does exist and is ready
to orchestrate services. Chifor (2017) refers to
orchestration to the automated arrangement,
coordination, and management of services. Sun
(2015) acknowledges Chifor and states that or-
chestration allows users to coordinate services
in a cloud. Orchestration includes not only the
deployment, but also the management, such
as availability, scaling, and networking. This
publication focuses on the development of ser-
vices, rather than the setup and operation of a
cloud environment. Cloud environments can be
provided and managed by both experts within
a company or on a pay-per-use basis from
public cloud providers. This publication applies
to the latter solution. Although the publication
does not cover cloud environments in detail,
it considers design criteria for services, which
let them seamlessly integrate into any cloud
environment.

The envisaged audience of this document is the
technician and technical manager operating
in the online printing sector. The document is
structured in four content chapters – excluding
the ‘Introduction’. The first chapter, ‘Printing
Technologies’, analyses the technical and eco-
nomic trends and backgrounds, the production
volumes, the technical state of the art, as well
as I.T. challenges in the printing industry. The
second chapter, ’Cloud Technologies and Archi-
tectures’, gives a technological and architectural
overview in Cloud Computing and finishes with
a technical concept, best practices, and rec-
ommendations of how to build cloud services.
‘Development of a Preview Generation Service’
is the third chapter. This chapter is the summary
of the preview generation service development

science and technology

32

International Circular of Graphic Education and Research, No. 12 2020

and contains the theory evaluations. It lifts out
the implementation of the primary design cri-
teria elaborated in the second chapter. Further,
the chapter refers to the source code, and the
cloud service live demo as well as the interface
specification of the service. The final chapter,
‘Conclusion’, contains the lessons learned
during the evaluation as well as recommenda-
tions of an I.T. framework of how to use Cloud
Computing technologies and architectures in
the online printing industry.

Printing Technologies

The online printing business is moving towards
mass customization. According to Pine (1993,
pp. 48-49), Mass Customization is the derivative
of Mass Production. Whereas Mass Production
focuses on the mass production of standard-
ized products, Mass Customization refers to
mass production of customized or even individ-
ualized goods. Both of these methods have the
objective of minimizing the per-unit cost. Mass
Production achieves the low unit cost primarily
by way of increasing the output of the single
standardized product (Economies of Scale). At
the same time, Mass Customization besides
raises the product variance of a single produc-
tion process (Economies of Scope). Fogliatto
et al. (2012) observed that Mass Customization
had become the dominant production form in
many markets. König (2013) sees a fundamental
change in commercial printing since the online
procurement of print products. She referred to
this emerging process as Mass Customization
as the process enables customers to individ-
ualize standard products with their content.
Nowadays, Mass Customization continues to be
an essential topic in the online print business.
Cimpress (2019 a), for example, a sizeable on-
line print provider, announced on their strategic

website that they are “building and deploying
an increasing number of modular, multi-ten-
ant micro-services and technologies as a mass
customization platform.” Mass Customization is
also a strategy employed at Flyeralarm, another
sizeable online print provider. Flyeralarm’s
founder Fischer (2019), stated in an interview
that Flyeralarm “stands for standardization and
‘mass customization’.” Today’s online printing
business continues to focus on the customiza-
tion of standard products as König has already
described in 2013. As advances in process inte-
grations continue to be made, maybe once real
individual products being available as opposed
to customized standard products.

We must clarify and understand what is the
meaning of ‘mass’ as it pertains to Mass Cus-
tomization regarding the printing industry? An
analysis of major online printing platforms such
as Vistaprint, Flyeralarm, WIRmachenDRUCK,
Onlineprinters, or Saxoprint reveals a broad
range of pre-defined standard print products,
including (folded) leaflets, magazines, post-
ers, letterheads, business cards, flags, textiles,
packaging, cups. With regard to the magnitude
of print jobs, Flyeralarm (2019) states that its
production is up to 15,000 orders per day and
has generated a revenue of 350 million Euros
in 2018. Dividing the €350MN by 250 work-
ing days and 15,000 jobs per day, the result is
an average job value of €93.33. Assuming an
average job value of €100 and 250 working
days per year provides a rough approximation
of the number of jobs produced by online print
providers based on their annual turnover:

science and technology

33

International Circular of Graphic Education and Research, No. 20 2020

Table 1: Calculated number of jobs per print provider in
 2018

Turnover
[€]

Jobs per
year

Jobs per
working
day

Vistaprint 1,250 m
(Cimpress, 2019,

p.31)

12.5 m jobs* 50,000 jobs*

Flyeralarm 350 m
(flyeralarm,

2019)

3.5 m jobs* 14,000 jobs*

Online-
printers

200 m
(Onlineprinters,

2019)

2.0 m jobs* 8,000 jobs*

WIR-
machen-
DRUCK

150 m
(WIRmachen-

DRUCK, 2019)

1.5 m jobs* 6,000 jobs*

Saxoprint 100 m (CEWE,
2018)

1.0 m jobs* 4,000 jobs*

* Calculated values based on 100 Euros average job value and
250 working days

This table aims not to represent the exact
figures of the listed companies, but rather to
provide a rough approximation of the volume
of printing produced by these companies. Nev-
ertheless, Saxoprint (2019) has stated on their
website that they are processing more than
4,000 jobs daily – a figure that corresponds to
the estimate of Saxoprint’s printing activity in
the table above. The analysis reveals that the
term ‘mass’ in the context of the online printing
business ranges from several thousand jobs per
day, up to several tens of thousands of jobs.
As previously mentioned, Mass Customization
is a progression of Mass Production. Therefore,
principles of Mass Production such as ‘Econo-
mies of Scale’ are also relevant in Mass Custom-
ization. Silberston (1972) describes ‘Economies
of Scale’ as the effect on production costs
concerning different rates of output. He argues
that high volumes allow enterprises to invest in
technology and expertise. These investments
will further lower the production costs - but
will never be economical for small production

volumes. As a result, the higher the output of
a production line, the lower the cost per unit.
Pine (1993, pp. 16-17) writes about a self-en-
forcing cycle in mass production whereby low
prices lead to an increase in demand, resulting
in a further increase in the production volume,
which once again lowers unit costs. Pine elabo-
rates that this cycle could even be reinforced by
standardizing products. Standardized products
avoid complexities and customized work, which
in turn increases the output and lowers the
unit costs. Product standardization is a feature
that can also be observed in the on-line print
business. Providers such as Flyeralarm, Vistap-
rint provide only a limited selection of paper
types, product sizes, and colors. According to
Keane (CEO, Vistaprint), this product standard-
ization is patented (United States Patent No. US
6,650,433 B1, 2003). The self-enforcing cycle of
mass production can also be found in online
print businesses. The dominating companies
are typically emerging firms and new industry
entrants which exhibit fast growth.

science and technology

34

International Circular of Graphic Education and Research, No. 12 2020

Figure 1: Revenue Flyeralarm in Euro (Statista, 2019)

Flyeralarm, for instance, was founded in 2002.
After just ten years in business, Flyeralarm had
a revenue of €260mn. Such printers produce
on large and highly specialized devices, which
would never be affordable nor economical for
small printers (Flyeralarm, 2017). Besides, when
analyzing their career portals, they hire experts
who are exclusively responsible for the process
optimization and automation, so that costs can
be decreased.

‘Economies of Scope’ may be the key to mass
customization. Panzar and Willig (1981) define
‘Economies of Scope’ as cost savings within
an enterprise achieved by the combination
of multiple production lines bundled into a
single production line, due to shareable inputs.
They argue that, as soon as shareable inputs
are implemented in multiple product lines, the
costs function exhibits ‘sub-additive’ behaviour.

Panzar and Willing refer to all kinds of resour-
ces needed for production (material, device,
applications, even buildings) as ‘input’. Pine
(1993, p. 196) sees ‘Economies of Scope’ “as the
best method to achieve mass customization,” as
it focuses on the creation of modular compon-
ents that can be configured into a wide variety
of end products. One method of applying
‘Economies of Scope’ in printing is known as
ganging. Keane et al. (United States Patent No.
US 6,650,433 B1, 2003) have examined gang-
ing as the aggregation of multiple print jobs
such as business cards, folders, brochures, in
order to produce them all in a single print run,
resulting in production costs savings. The CIP4
Consortium (CIP4, 2018, p. 70) refers to the
‘ganging process’ as ‘Sheet Optimization’. Other
forms of shared inputs in print production lines
include prepress processes. The XJDF Specifi-
cation (CIP4, 2018, p. 57) defines all processes

science and technology

35

International Circular of Graphic Education and Research, No. 20 2020

performed before printing as Prepress Process-
es. Most of the Prepress Processes consist of
services that check, correct, and optimize the
customer’s artwork data, as well as prepare
the digital printing form. Examples include
Pre-flight, Colour-Correction, Image-Enhance-
ment, Imposition and Trapping (CIP4, 2018,
pp. 77-93). If prepress services exist as modular
components, they can be used as shared inputs
between multiple print production lines.
When sharing prepress services between
production lines, each service shall work
independently, abstracted by an Application
Programming Interface (API) for integration.
Orenstein (2000) describes APIs as the proper
way of how one application consumes a service
provided by another. Reddy (2011) espouses a
more centralistic view of APIs: He describes an
API as being “an abstraction for a problem and
specifies how clients should interact with soft-
ware components that implement a solution
to that problem.” Reddy’s perspective considers
APIs more as a self-contained component rath-
er than just an interface of a service. Zalando
(2019 a) supports Reddy’s view and goes even
further: They want developers to embrace
APIs as independent products. This approach
“facilitates a service ecosystem that can be
evolved more easily and used to experiment
quickly with new business ideas by recom-
bining core capabilities.” APIs have assumed a
central role in contemporary systems. So, too,
at Amazon: Jeff Bezos, Amazon’s CEO, already
issued an internal mandate in 2002 in which
he strictly instructed all teams to communicate
exclusively by way of APIs in order to make the
company scalable (Kim, 2017). Amazon has,
therefore, become one success story for shared
inputs and ‘Economies of Scope’. From a more
general perspective, Mass Customization and
APIs are closely related to each other, as APIs
ensure the reusability of services. Concerning

Mass Customization in the printing industry,
this means that precise API specifications of
prepress services are a prerequisite for making
them shareable between production lines.
Interoperability Conformance Specifications (or
simply ‘ICS Documents’) are the API specifica-
tions of the Graphic Arts Industry. ICS Docu-
ments are self-contained specifications which
are sub-classed from a master specification for
a particular use case. The International Colour
Consortium (ICC, 2019), for instance, is the pub-
lisher of the iccMAX specification, which speci-
fies an extended colour management system.
One use case of an ICS Document in that field
is the ICS for ‘Spot Colour Overprint Simulation’,
which specifies the visualization and simulation
of ink overprints. Whereas the ICC standardizes
the colour management, CIP4’s mission is the
standardization of the process automation in
the printing industry (CIP4, 2019 a). In order to
achieve this, CIP4 maintains various specifica-
tions, including the Exchange Job Definition
format (XJDF) and the Job Definition Format
(JDF). CIP4 also follows the approach of Inter-
operability Conformance Specifications, as
previously described (CIP4, 2018, p. 10). An
example of a JDF based ICS Document is the
‘MIS to Conventional Printing ICS’, which is a
subset of the JDF Specification and defines
the interoperability requirements between a
Management Information System (MIS) and a
sheet-fed offset press (CIP4, 2015). The focus
of a master specification is to standardize the
communication concept as well as providing an
integrated data model describing all aspects of
an entire field at the right level of granularity.
Interoperability Conformance Specifications
elaborate one use case and specify which
aspects of the master specification are relevant
in which situations and which one not (Meiss-
ner, 2019). In the context of shareable prepress
services, this means that each kind of service

science and technology

36

International Circular of Graphic Education and Research, No. 12 2020

requires an individual ICS Document specifying
how to communicate and which data must be
exchanged.

When dealing with modularised and share-
able services that are abstracted by an API,
next, these services need to be deployed in a
productive environment. As previously ex-
plained, Mass Customization means to process
up to several tens of thousands of jobs per
day. Besides, these jobs typically do not occur
consistently in the run of a day. In such an en-
vironment, flexibility, scalability, and reliability
of shared services are essential. According to
Dikaiakos et al. (2009), Cloud Computing is a
direction in Information Technology that brings
applications from local installations into large
centralized data centres. This approach would
not only raise the application’s scalability and
reliability, but it would also reduce the costs.
Islam et al. (2013) parallels the emerging inter-
est in Cloud Computing on the part of busi-
nesses and individuals. They argue that Cloud
Computing comes with a new service-centric
technology that fosters business agility and
the quality of services. Moreover, they also see
the cost optimization of Cloud Computing. The
remainder of this publication subsequently
addresses the following research question: How
to adapt Cloud Computing technologies and
architectures in order to design an econom-
ical and sustainable Information Technology
(I.T.) infrastructure for the online printing
industry?

Cloud Technologies and Architec-
tures

The term ‘Cloud Computing’ (or ‘The Cloud’) re-
fers to a highly scalable and reliable on-demand
Information Technology (I.T.) Infrastructure.
Cloud Computing includes the physical
hardware as well as the software running on
it. The U.S. National Institute of Standards and
Technology (Mell & Grance, 2011, p. 2) has de-
termined Cloud Computing to be “a model for
enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications, and services) that can be
rapidly provisioned and released with min-
imal management effort or service provider
interaction.” Armbrust et al. (2010, p. 50) have
defined Cloud Computing similarly, but from
a more service-oriented perspective. They see
Cloud Computing as applications delivered as
services over the Internet, as well as the hard-
ware and systems software of the datacentre
providing these services. Whereas Armbrust et
al.’s definition explicitly sees a relationship be-
tween Cloud Computing and services provided
over the Internet, Mell & Grance (2011) do not.
Instead, Mell & Grance (2011, p. 3) describe an
on-premise private Deployment Model of Cloud
Computing. The service-oriented perspective
is, in fact, key in Cloud Computing. The service
concept should not be limited to the (final) ser-
vice applications only. However, hardware- and
system management underneath might also
be considered as services – albeit on a lower
abstraction level.
Services in the context of Cloud Computing
provide functionality not only to the end-user
but also to developers who are responsible
for developing and operating such services.
A (final) service providing functionality to the

science and technology

37

International Circular of Graphic Education and Research, No. 20 2020

end-user is typically based on a set of low-
er-level services that abstract the cloud infra-
structure underneath. This method enables
developers to provide higher-quality software
in less time. Those abstraction levels of ser-
vices are commonly referred to as Service
Models. Gibson et al. (2012) maintained that
infrastructure-, platform-, and software-as-a-
service are the predominant Service Models.
They have classified Infrastructure-as-a-Service
(IaaS) as the management of servers, storage
and virtualization, and Platform-as-a-Service
(PaaS) as a middleware allowing developers to
write applications without the requirement of
a more in-depth knowledge of the underlying
infrastructure. Software-as-a-Service (SaaS) they
have classified as applications that reside in the
cloud rather than on the user’s device. A similar

Figure 2: Cloud computing services models (Foulds, 2018, p.11)

classification has also been examined by Mell &
Grance (2011, pp. 2-3). They have defined IaaS
as the capability to provide processing, storage,
networking, and other fundamental comput-
ing resources, along with PaaS, as a means of
deploying applications onto to cloud without
knowledge of the cloud infrastructure under-
neath. SaaS is described by Mell & Trance (2011,
p. 2) as having the capability to consume ap-
plications deployed to the cloud infrastructure.
Foulds (2018, pp. 10-11) also supports the three
Service Model classifications (IaaS, PaaS, SaaS)
as previously outlined:

science and technology

38

International Circular of Graphic Education and Research, No. 12 2020

This illustration by Foulds (2018, p. 11) depicts
four columns - one for each Service Model. Each
column represents the identical technology
stack needed to provide a service application
(SaaS). Each box in a column represents a
component of the technology stack. The com-
ponents are ordered bottom-up, by abstrac-
tion level. The background colour of each box
indicates who is responsible for managing this
component in the appropriate Service Model.
Blue background colour indicates manage-
ment by the consumer (referred to as “you”),
while dark-blue refers to management via the
provider (referred to as “vendor”). In addition to
the three previously discussed Service Mod-
els, Foulds (2018, p. 11) has also visualized the
Service Model “Traditional on-premises,” which
in this context means that no cloud infra-
structure is used at all – everything is managed
by the consumer (“you”). It seems that there is a
common understanding of IaaS, PaaS, and SaaS
among developers and cloud providers. How-
ever, Foulds' (2018) Service Model “Traditional
on-premises” can be supported in the context
of his book. However, from a general perspec-
tive, this Service Model contradicts the concept
of Deployment Models of clouds.

Generally, one can differentiate between two
theoretical manifestations of Deployment
Models in Cloud Computing: public and private.
A public Deployment Model is a cloud infra-
structure that is hosted by a cloud provider
and is used by (many) tenants. In contrast, the
private Deployment Model is a cloud infra-
structure that is hosted on a company’s internal
I.T. infrastructure and is primarily targeted for
its exclusive use. Keung & Kwok (2012, p. 21)
support this differentiation between public and
private cloud infrastructure in the same way.
They present in their paper a score-based Cloud
Deployment Selection Model (CDSM), which

helps small and medium-sized enterprises
(SME) to choose the right Deployment Model,
should they opt to implement Cloud Com-
puting. Unfortunately, Keung & Kwok’s (2012)
perspective recognizes only public and private
Deployment Models. They do not consider
the concept of hybrid cloud infrastructure, a
mix of both, and probably the most suitable
Deployment Model for most companies. Mell
& Grance’s (2011, p. 3) standard document also
conforms to the definition of public and private
Deployment Models as previously introduced in
this paragraph. Also, they have defined the hy-
brid cloud Deployment Model as a combination
of both public and private. Weinman (2016, pp.
7-8) has published case studies that give insight
into the cloud strategies of some commonly
known companies. He states that there are as
many cloud strategies as there are companies.
However, the case studies of Weinman reveal
that most companies work with a hybrid cloud
- either because of their I.T. strategy, or because
of an active migration process from private to
public cloud and vice versa.

Containerization appears to be the superior
technique when developing cloud applica-
tions. Conceptually, containerization is another
Service Model which is in the abstraction level
between Infrastructure-as-a-Service and Plat-
form-as-a-Service:

science and technology

39

International Circular of Graphic Education and Research, No. 20 2020

Figure 3: Container-as-a-service (Foulds, 2018, p.11)

Figure 3 is a modification of Foulds’ (2018, p.
11) illustration of Cloud Computing services
models (Figure 2). In Figure 3, a new column
appears between IaaS and PaaS in which the
vendor manages everything below and includ-
ing the operating system (O.S.). Both virtualized
machines (IaaS) as well as containers presenting
an O.S. interface to the developer, according
to Bernstein (2014, p. 83). However - whereas
IaaS requires a complete implementation of the
O.S. - containers only gives a “view”, or a “slice”
of the host O.S.. Bernstein (2014, p. 82) further
states that, as containers share a common
host O.S., the deployments are significantly
smaller in size than are IaaS deployments. This
approach enables developers to store hun-
dreds of containers on a single physical host.
Another advantage of the shared O.S. is that

(re-) starting a container does not (re-) start an
entire O.S. This makes containers flexible and
easy to handle in contrast to virtual machines.
Docker (2019), a leading company in contain-
erization, conforms to Bernstein’s explanations.
Beyond that, Docker (2019) describes a contain-
er as a standard unit of software that packages
up code and all its dependencies so that an
application can run quickly and reliably on a
broad range of computing environments. Many
major cloud providers provide I.T. infrastruc-
ture to host and execute containers. Examples
include Amazon’s Elastic Container Service for
Kubernetes (Amazon EKS), Google’s Kubernetes
Engine, or Microsoft’s Azure Kubernetes Service
(AKS). However, containers can also be execut-
ed on a local machine or within a company’s
private network. It seems that containerization

science and technology

40

International Circular of Graphic Education and Research, No. 12 2020

has become the de-facto standard in Cloud
Computing, as it is broadly supported and
implemented.

Containerization has become a notable di-
rection in I.T. development, and it seems that
Docker Container Runtime is the de-facto stan-
dard. Sysdig (2018), has published a study on
containerization based on a sample of itemized
information of 90,000 productive containers.
The information was from “a broad cross-sec-
tion of vertical industries and companies rang-
ing in size from mid-market to large enterprises
across North America, Latin America, EMEA,
and Asia Pacific.” In this study, they observed
a “tremendous momentum across the Docker
container ecosystem year-over-year.” Addition-
ally, Sysdig (2018) also notes the dominance of
Docker containers in 2018:

Figure 4: Container Runtimes (Susdig, 2018)

The figure above illustrates the market shares
of the most common container runtimes: The
Docker container runtime leads with 83 %,
followed by CoreOS RKT (12 %), Mesos Con-
tainerizer (4 %), and Linux Containers LXC (1

Figure 5: Trend of Search Terms ‘docker’, ‘coreos’, ‘mesos’, ‘lcx’ (Google Trends, 2019)

%). However, according to Sysdig (2018), the
market share for the Docker container runtime
decreased from 99 % of the market in 2017.
Sysdig’s (2018) assertion regarding a “tremen-
dous momentum across the Docker container
ecosystem year-over-year” can be underpinned
by Google Trends (2019) (Figure 5).

The Google Trends (2019) diagram indicates a
continuous uptrend for the search term ‘docker’
since 2013. Regarding the market shares of
container runtimes, there is no other source
for affirmation. Nonetheless, the dominance
of docker containers becomes conspicuous as
soon as one carries out further research into
containerization. The container runtime sup-
ported by apparently all public cloud providers
remain Docker.

In contrast to traditional computers and virtual
machines, containers are stateless and immut-
able and only contains a single application.
They are stateless means that any state of per-
sistent data must be stored outside the contain-
er in a database, or some other type of external
storage. Statelessness ensures that containers
can be replicated or destroyed at any time with-
out the fear of data loss. Immutability means
that, once created, a container cannot be

science and technology

41

International Circular of Graphic Education and Research, No. 20 2020

updated, patched, or reconfigured. Each modi-
fication of a container requires a new version.
This approach ensures that a container version
is almost identical - independent of the cloud
environment it is executed. Designing contain-
ers as stateless, immutable single applications
maximizes their flexibility during execution.
This method parallels Google’s explanations of
the concept of containers in their articles “Best
Practices for Operating Containers” (Google
Cloud, 2019 b) and “Best practices for building
containers” (Google Cloud, 2019 a). Docker Inc.
(2019 a) simply elaborates on design criteria,
explaining that containers should be as ephem-
eral as possible while referencing the chapter
“VI. Processes” of Wiggins (2017) publication
“The Twelve Factors” regarding a methodology
for building software-as-a-service apps. In that
chapter Wiggins (2017) states that “Twelve-fac-
tor processes are stateless and share-nothing.”
In explaining this opinion, Wiggins states that
all persistent data must be stored in a stateful
backing service such as a database, and any
cached data must never be assumed on future
executions. Wiggins’ statement is substantially
equivalent to that of Googles regarding state-
lessness and immutability. The meaning is the
same, but from slightly different perspectives.
Another design criterion pertains to logging.
When running applications in containers, all log
information must be provided via standard out-
put (stdout) and standard error (stderr). Logs
make applications replicable during runtime
by recording all notable events that occur in
combination with metadata, such as the times-
tamp or the process id. The traditional means of
logging is that applications record logs in local
text files. The use of stdout and stderr methods
allows container runtimes to continually collect
all container logs during execution using a uni-
fied approach and provide them, if required. As
a result processes are conducted in a simplified

and comprehensive structure. Subsequently,
processes may include a centralized log file
retention or an automated log file analysis. The
article “Best Practices for Operating Contain-
ers” (Google Cloud, 2019 b) acknowledges
the method of writing log information to
stdout and stderr by explicitly advising imple-
menters to use that container-native logging
mechanisms. Furthermore, Google considers
‘logging’ to be an integral part of application
management as “logs contain precious infor-
mation about the events that happen in the
application” (Google Cloud, 2019 b). Hromis
(2019) also supports the importance of logging
and logging centralization. Hromis deals with
approaches on how to centralize logging using
Docker Log Drivers: Depending on the type
of central log management system and the
preferred way of transmission, a different kind
of log driver is required. However, though log
drivers may exhibit apparent differences, the
collective input of all log drivers is the collected
log information written by the managed con-
tainers in their appropriate stdout and stderr.

Containerization also affects application archi-
tecture with regards to microservices. Balalaie
et al. (2016, p. 42) describe the Microservice
Architecture as a cloud-native architecture
that aims to design systems as individual and
independent services. The communication
between these services is based on lightweight
standard API technologies such as RESTful
(Representational State Transfer) or RPC (Re-
mote Procedure Call). By the use of container-
ization, each microservice will be conceptually
represented by a single container. According
to its load, each container (microservice) can
selectively be executed once or multiple times
simultaneously. As the docker container format
is broadly supported, a high degree of port-
ability can be ensured (Balalaie, Heydarnoori,

science and technology

42

International Circular of Graphic Education and Research, No. 12 2020

& Jamshidi, 2016, p. 46). Singh and Peddoju
(2017) observed the growing popularity of the
microservice design in cloud applications. They
justify that trend as microservices allow select-
ive scaling of single tasks (services) according to
their demand in contrast to monolithic applica-
tions, which can only be scaled in it’s entirety.
Additionally, they explain that microservices
increase the systems flexibility and lower costs.
As scalability is one key feature in Cloud Com-
puting, it seems suitable to split up medium
and large sized applications into microservices.
However, small applications potentially should
be provided as containers, but following the
monolithic approach.

Singleton (2016, p. 16) sees microservices as
perhaps the only solution to build and manage
complex software systems as he sees a con-
ceptual limit to the number of functions one
team can specify, test, and maintain. In con-
trast to traditional monolithic architectures,
where all system services consist of a joint
code base and are tightly coupled, microser-
vices are decoupled services. Each one has
its independent code base and might use an
individual technology stack (Singh & Peddoju,
2017, p. 852). Further, Singh and Peddoju (2017,
p. 852) elaborate on microservices that the
granular design pattern enables developers to
work simultaneously on different services. This
method results in better scaling and increased
flexibility of enterprise applications. Singleton
(2016, p. 18) further addressed the release fre-
quency and agility of microservices in contrast
to that of monolithic applications. Due to their
complexity, monolithic applications usually
require extensive test- and release times (up to
several months and more). In contrast, micros-
ervices would be able to be tested and released
often and frequently, even multiple times daily.
Nevertheless, Singleton (2016, p. 17) argues

that the microservice architecture comes with
substantial costs as additional machinery for
communication, routing, deployment, and
monitoring of service is required. He there-
fore recommends microservices only for large
systems. However, cloud infrastructure has
continued to evolve since the publication of
Singleton’s 2016 paper. Today the substantial
costs Singleton mentioned are certainly on a
more economical level and should, therefore,
be reconsidered for each specific use case.
Chelladhurai et al. (2016) have examined secur-
ity issues regarding containerization. The main
advantage of containerization - the sharing of
the host’s kernel – is, at the same time, the weak
point of the technology. In contrast to virtual-
ization, containerization has no extra isolation
layer between the applications and the host,
which prevents the host from an escalation out
of a compromised container. Once an attacker
has access to the host, one might perform at-
tacks such as denial of service (DoS) or privilege
escalation. Chelladhurai et al. (2016) have listed
security enhancements implemented by the
container runtime providers to secure the sys-
tem. These enhancements show that security
benefits from keeping the container runtime
up to date with the most recent version. System
providers, for instance of Docker Swarm or
Kubernetes, have guidelines that dictate the
announcement and publishing of essential
security updates. In addition to containers run-
time security, Chelladhurai, Chelliah, and Kumar
(2016) also suggests design criteria for contain-
ers to make them more secure. The first is to
minimize the number of binaries and services
running in a container as a means of decreasing
the containers attack surface. Another criterion
is to design containers being executed with a
read-only file system. The read-only file system
shields a container from being manipulated.
These design criteria are also acknowledged

science and technology

43

International Circular of Graphic Education and Research, No. 20 2020

by Google Cloud’s (2019 a) best practice guide
in which Google advises removing needless
tools to reduce the attack surface. Google also
recommends using read-only file systems in
order to prevent attackers from installing their
tools. According to Google, this protection can
be enforced by avoiding running applications
inside containers with root privileges. Chellad-
hurai et al. (2016) also write about resource
restrictions such as limiting kernel calls, mem-
ory, CPUs, and network access. These resource
optimizations are not listed in Google Cloud’s
best practice guide. When creating an ordinary
container, the security-specific design criteria
listed above appear to be sufficient. However, if
security is crucial, one should delve deeper into
the resource-specific optimizations.

Development of a Preview
Generation Service

The generation of preview images is a typical
process implemented in most print production
lines. Preview images represent a visualization
of content on a surface and are used as input
resources for various applications. Applications
include, for instance, ink coverage calculation
or providing a visual representation of what
being produced (CIP4, 2018, p. 209). As preview
generation is a broadly used but also an easy
definable process, it is a good one to be picked
up for evaluation purposes of the concepts,
architectures, and techniques described in the
previous chapters. This chapter will consider
the development of a preview generation cloud
service as an evaluation and proof-of-concept
of cloud computing in the printing industry.
The preview service is designed as a stateless
Docker Container providing both an XJDF
based Application Programming Interface (API)
for the automated generation of preview im-

ages as well as a graphical user interface for the
manual interaction with the service. The service
consumes PDF Documents and produces PNG
preview images of the first page of the PDF
Document in the desired resolution (default:
72 dpi). The service is implemented against
an Interoperability Conformance Specification
(ICS), which abstracts the business logic of the
service. All project sources, as well as the ICS
Document, are available on github.com: https://
github.com/ricebean-net/PreviewService.
The latest version Docker container image is
built and published continuously on Docker
Hub: https://hub.docker.com/r/ricebean/pre-
view-service. One live test instance of the pre-
view service is running at https://preview-ser-
vice.ricebean.net.

Application Programming Interfaces (APIs)
are a significant key when building distribut-
ed systems based on scalable (Economics of
Scale) and configurable (Economics of Scope)
services. Recall, APIs abstract and decouple
services in a way so that they can be reused in
multiple production lines and even in various
applications. Besides, precise API specifications
allow to implement a service in a production
line, even when the service self has not (entire-
ly) implemented yet. This kind of abstraction
enables development teams to work in parallel,
even if they depend on each other. Lin (2018)
and Trieloff (2017) promote, therefore, an ‘API
First’ development approach, which requires to
specify the API before starting any writing of
code. Many development teams broadly sup-
port the ‘API First’ strategy – so too at Zalando
(2019 b). Within the context of the develop-
ment of the preview generation service, also
the ‘API First’ development approach has been
chosen. Remembrance, Interoperability Con-
formance Specification (ICS Documents) are the
API specifications in the printing industry. Fol-

science and technology

44

International Circular of Graphic Education and Research, No. 12 2020

lowing the ‘API First’ approach means that the
ICS Document defining the preview service’s
API must completely be specified before the
implementation of the service can start.

This publication follows the CIP4’s guidelines
of Interoperability Conformance Specifications
(ICS Document). The consortium provides a set
of standardized ICS Documents for the printing
industry based on JDF (CIP4, 2019 b) and XJDF
(CIP4, 2019 c). CIP4 does not provide an official
guide on how to write ICS Documents. How-
ever, when analyzing existing ICS Documents, a
consistent structure emerges: An ICS Document
differentiates between the two roles ‘Manager’
and ‘Worker’. ‘Worker’ relates to the service pro-
vider (here: preview service), whereas ‘Manager’
is the service’s consumer. Recall, ICS Documents
subset the master specification. The core of
an ICS Document is a precise list of elements
and attributes, initially defined by the master
specification, which are relevant in the use case
described by the document. ICS Documents
further define which of these elements and
attributes are mandatory, conditional required,
optional, or even prohibit to read or write by
the appropriate roles. In contrast to CIP4’s ICS
Documents, which are published as PDF, the
Previews Services ICS has been published as a
‘GitHub Markdown’ document (GitHub, 2019):
https://git.io/JeSGG. Even Markdown should
not be the preferred way of distribution of ICS
Documents; within this publication, it is reason-
able, as it is easy to read and modify.

Once the Interoperability Conformance Speci-
fication of the preview service is finished, the
implementation of the preview service can
begin. The technology stack used in order
to implement the service is usually up to the
developer or the development team, as long
as the requirements defined in the ICS Docu-

ment are satisfied. This principle is precisely one
meaning of “abstraction for a problem,” as previ-
ously cited Reddy (2011). The technology stack
used within this publication is based on Java, as
the author is most experienced in this technol-
ogy. Java is a standard programming language
maintained by Oracle, which is broadly used in
enterprise- and web-applications as well as in
cloud computing (Oracle, 2019). The core of the
author’s implementation is a third-party com-
mand-line tool called ImageMagick. This Image-
Magick (2019) tool is a free, open-source utility
that includes functionality for image format
conversion as well as for resizing of images. The
Java application provides the endpoints as re-
quired by the ICS Document and is responsible
for the internal file and configuration handling.
All image related work is internally forwarded
to ImageMagick. ImageMagick may be con-
sidered to be the PDF Engine of the preview
service. Although ImageMagick is a powerful
tool, it shall never be used to create or modify
the print files because it is not optimized for
printing.

Once the preview service development has
been completed, the application needs to
be packaged as a container. One significant
dependency of the preview service is Image-
Magick. ImageMagick is not a Java library but
an independent command-line tool that needs
to be installed separately on to the target
system. Before containerization, it was essential
to install the Java Runtime Environment (JRE),
ImageMagick as well as the Preview Service
itself on the target system. This installation was
often a manual effort and prevented the system
from being flexible and scalable. Containers
have changed this significantly: Recall, Dock-
er (2019) describes a container as a standard
unit of software that packages up code and
all its dependencies so that an application can

science and technology

45

International Circular of Graphic Education and Research, No. 20 2020

run quickly and reliably on a broad range of
computing environments. In order to create a
new version of such a standard unit of soft-
ware – also known as Container Image – for
the preview service, the file ‘Dockerfile’ in the
project’s root needs to be executed (see https://
git.io/JeS48). Here, the execution generates
a new container image containing the latest
version of the preview service, the JRE as well
as ImageMagick. When finished, the container
image is being tagged with name and ver-
sion (e. g. ‘ricebean/preview-service:1.0’) and
finally is uploaded to ‘Docker Hub’ (see https://
hub.docker.com/r/ricebean/preview-service).
‘Docker Hub’ are called repositories to archive
and share container images with teammates,
customers, or the public (Docker Inc., 2019 b).
‘Docker Hub’ is not the only repository provider,
but probably the most common one.

Container Images stored in a repository can
easily be deployed on a broad range of diverse
environments. As prior mentioned, target en-
vironments include Amazon’s Elastic Container
Service for Kubernetes (Amazon EKS), Goo-
gle’s Kubernetes Engine, or Microsoft’s Azure
Kubernetes Service (AKS). In case just a simple
container without a data storage needs to be
deployed, fully managed (called ‘serverless’)
container runtime environments are addition-
ally provided. Cloud Run, for instance, is such
a serverless container runtime environment
provided by Google Cloud (2019 c). The author
has also chosen this one in order to deploy the
preview service for demonstration purposes
(see https://preview-service.ricebean.net) It
should be noted that the first call of the appli-
cation may take some time as the Java applica-
tion within the container has to be launched.
Along public cloud providers, Container Images
stored in a repository can even be deployed on
the readers local desktop computer. A running

Docker Engine is the only prerequisite need-
ed (Docker Inc., 2019 c). When the engine is
running, a container can simply be activated
executing the ‘docker run’ command in the
command-line, extended with optional param-
eters as well as the appropriates containers tag:

$ docker run -p 8080:8080 ricebean/pre-
view-service:1.0

Code example 1 docker run command

The code sample above illustrates the com-
mand needed in order to run the preview ser-
vice on the local environment. The first part of
the command (‘docker run’) advises the Docker
Engine to start a container. The second part
(‘-p 8080:8080’) is a parameter that instructs
the engine to forward the localhost’s port 8080
to the container’s port 8080. This parameter is
required, as the container will be started as an
autonomous machine on the user’s local com-
puter. The last part of the command (‘ricebean/
preview-service:1.0’) is the globally unique tag
of the preview service container image - version
1.0. It may be considered that, once a Container
Image is available on a public repository, it can
be deployed easily on a wide range of diverse
environments.

As earlier mentioned, containers are designed
to be immutable and stateless. Accordingly, all
running instances of the same container image
behaves almost identical – independent of the
environment they are running in. This design
criteria of containers are beneficial for testing,
as these criteria ensure that the identical func-
tionality and configurations can be deployed
on both the test systems as well as the product-
ive systems. In the context of the preview gen-
eration service, this means, each new version
can be deeply tested before being deployed
productively. One test scenario of the preview

science and technology

46

International Circular of Graphic Education and Research, No. 12 2020

service is, for instance, the pdf rendering test.
This test consists of a set of pdf documents next
to the expected preview results. When execut-
ing that test, the test sends all pdf documents
to the test instance of the preview service,
waits for the generated preview images, and
compare them with the appropriate expected
preview results. If there is no difference, the test
succeeds, otherwise it fails. This test method
protects the system from unwanted changes.
In preview generation, slight changes from
one version to the next seems not to be that
crucial as it is just a preview image. However,
the situation will change as soon as a service
modifies the customer’s artwork files, which is
mission-critical. Using containers allow system
operators to test adequately mission-critical
services in a separate test environment as con-
tainers ensure an identical behavior independ-
ently of their environment.
Logs are an integral part of application
management as they make applications rep-
licable during runtime. They record all notable
events that occurred in combination with

Figure 6: Logs Preview Service StdOut

metadata, such as the timestamp or the process
id. In the following is a screenshot of the logs
produced by the preview service form applica-
tions start through the generation of the first
preview image. The following image depicts the
consoles standard output (Figure 6).

When the preview service starts, first, the
‘Spring’ banner appears. Spring (2019) is the
programming framework that has been used
for the development of the preview service.
Following the banner, the first log message ap-
pears. Log messages written by the preview ser-
vice are following Spring’s default log scheme:
{TIMESTAMP} {SEVERITY} {METADATA} {MES-
SAGE}. The timestamp of the first message is
‘2019-12-22 10:00:38.544’, the severity is ‘INFO’,
and the actual log message is ‘Starting appli-
cation on (…)’. The timestamp reflects the date
and time when the message has been generat-
ed. The severity defines whether this message is
of informal (‘INFO’), warning (‘WARN’) or critical
(‘ERROR’) nature. The message itself is the hu-
man-readable description of the log event. The

science and technology

47

International Circular of Graphic Education and Research, No. 20 2020

log events depicted in the figure above reveals
that the start of the preview service took from
10:00:38.547 through 10:00:40.233. During
that time, multiple log messages containing
the application’s status and meta-information
has been produced. The log events produced
by the generation of the preview image of
the file ‘tu-dublin.pdf’ can be seen up from
10:17:58.221. Each running container instance
produces such kind of log messages. Keeping
the overview of all messages is important, as
it is an indicator of the health of the entire sys-
tem. However, the more containers are involved
in the system, the more challenging the task. In
such a situation, a central log management and
analysis tools become unavoidable. The tool
selected for the preview service deployed at
the Google Cloud (see https://preview-service.
ricebean.net) is Stackdriver Logging (Google
Cloud, 2019 d) as this is the pre-configured one
in the Google Cloud.

The containerization security aspects addressed
prior in this document pertain to both the con-
tainer runtime engine and the container image.
As the preview service is running in Google
Cloud’s serverless environment, primarily
security issues regarding the container image
have been considered. One important criterion
in that field is the minimalization of the con-
tainer’s size in order to decrease the containers
attack surface. When creating a new container
image, first, a Base Image needs to be selected,
in which the custom application is going to be
installed. Base Images are container images
containing an operating system layer, as well as
some pre-installed software, and therefore have
a significant impact on the size of the final con-
tainer. The preview service image is built upon
the ‘openjdk:8-jre-slim’ Base Image (https://
git.io/JeS48 - line 44). This image provides a
Linux kernel and comes with pre-installed

essential Debian Linux tools as well as a Java 8
Runtime Environment (JRE). Another method
to minimize container sizes are multi-stage
builds (Docker Inc., 2019 d). Multi-stage builds
are a cascade of temporary containers during
image generation in order to keep compilation
tools out of the final image. The compilation of
the application’s source code usually requires
additional compilation tools. Java, for instance,
requires the Java Development Kit (JDK). By the
use of multi-stage builds, temporary containers
are cascaded in order to generate the final ap-
plication, which finally is being copied into the
final image (https://git.io/JeS48 - line 21). This
method allows developers to keep the compil-
ation tools out of the final image – which again
minimizes the container size. Minimal container
sizes are not only beneficial for security reasons,
but also storage and orchestration.

Conclusion

Exposing prepress cloud services as contain-
ers is the preferred way to go. The concept of
containerization allows developers to provide
services as standard units of software that can
be easily deployed and managed on many
target cloud environments (public, intern,
local). The standard units contain not only the
self-made application, but also all external
dependencies. The Preview Generation Cloud
Service, for instance, requires an ImageMagick
(I.M.) pre-installed on the Operating System,
as this command-line application is doing
the actual preview generation. Providing the
preview cloud service using the conventional
way, someone would have to install Image-
Magick on the host system. Further, it shall be
ensured that the same version of I.M. is used
as previously was used during testing. Also,
it shall be ensured that the I.M. version keeps

science and technology

48

International Circular of Graphic Education and Research, No. 12 2020

the same and is not being updated accident-
ally, e.g., by automatic system updates. When
having mission-critical service, the convention-
al way requires a high management effort in
order to get equal service stability and quality
as containerization provides out of the box.
Containers allow to put all dependencies in a
defined version as well as the application itself
into one standard unit of software. So, it can be
ensured that an application is always running
in a well-defined environment. Further, having
a standard unit containing all dependencies
makes services easily interchangeable between
cloud systems.

Containers are flexible regarding (third-party)
applications, libraries, and programming
languages used inside. Recall, containers are a
kind of virtualization of the Operating Systems
(O.S.). So, the only prerequisite of libraries and
applications installed in a container is that they
would technically run on the host O.S. This
means, when the host O.S. is a Linux amd64, all
software packaged inside the container must
be runnable on such as system architecture. The
preview cloud service, for instance, has been
implemented in Java – but only because the au-
thor is best experienced in that programming
language. The service could also have been
implemented in PHP, Python, Node.js, C++, C#,
or any other one. This kind of flexibility works,
because the programming language’s runtime
environment can be installed in the container
in the same way as ImageMagick has been
installed. As the preview service is a Java ap-
plication, a Java Runtime Environment (JRE) is
required to be beside in the container. This flex-
ibility of containers does no longer require that
an entire production system must be built from
one single technology only. Each development
team can decide for themself, which (third-
party) applications, libraries, and programming

language they want to use. The technology
stack used may differ from the team’s experi-
ence and even from the service’s business case.
The concept of individual and isolated services,
along with the high flexibility, is how containers
promote the microservice architectures. Micros-
ervices are the way to enable printing houses
to build flexible, adaptable, and sustainable
software systems - as previously outlined in this
document.

The concept of containers to encapsulate an
individual service application, including all de-
pending third-party applications and libraries
in a standardized unit, makes the technology
beneficial for mission-critical tasks. Besides, the
fact that containers are immutable and stateless
even reinforce the beneficial effect. Both ensure
that a container image of the same version
behaves equally – independently of the cloud
environment. Note, the worst-case scenario in a
printing house is NOT that a service breaks, and
the entire system is interrupted from operation
for a while. The worst-case scenario will be if
a service is manipulating customer artworks
in a way that only the customers recognize. In
such a scenario, a printing company produces
actively waste – maybe even for multiple days.
Whereas overcapacities can compensate for the
prior scenario, the costs of the latter scenario
could be immense, as damaged goods are
being produced and delivered. Containers help
to minimize this risk, as they allow a sustain-
able testability. The architectural concept of
containers guarantees that a container behaves
identically in a test environment as later, when
running in production. This capability enables
companies to fundamentally test each version
of mission-critical service and ensure that pre-
cisely the tested functionality is being deployed
to production. Containerization is a convenient
and sustainable method for mission-critical

science and technology

49

International Circular of Graphic Education and Research, No. 20 2020

services.

The fact containers can be started and stopped
quickly and, at any time, improves the reliability
of the overall system. This behaviour allows, for
instance, to scale a system elastically: As soon
as a performance peak is notified, immediately
additional instances of the container can be
started and vice versa. The additional contain-
er instances are not limited to be started in
the same cloud environment. So, companies
become capable of outsourcing their perform-
ance peaks to external computing resources.
Further, the capability to quickly start and
stop container instances enable services to be
updated with zero downtime. This functionality
is typically part of the cloud orchestration and
ensures that the new service version is started
and up working before the prior one is going
to be shut down. As a result, a service can be
updated without downtime and interruption
of consumers. In case a service update fails or
causes an operational error, the update can eas-
ily be rolled back by re-deploying the formerly
running version of the service. Designing servi-
ces as containers will raise the reliability of the
overall system as many operational exceptional
cases can be addressed.

Interoperability Conformance Specifications
(ICS) are a proper way to specify Application
Programming Interfaces (API) in the printing
industry. CIP4 typically defines the two roles
which are involved in the communication (for
instance, ‘Worker’ and ‘Manager’) and define in
an accurate way, which role has to read or write
which information. Defining roles raises the
precision of interface specifications resulting
in better interface implementations. However,
ICS Documents are typically published as
PDF Documents. Meaning, they are primarily
designed for human readability. CIP4 has not

changed this method since publishing the
first document. However, in order to further
improve the quality of API implementation, it
could be helpful to have an API specification
which is both human and machine-readable.
Such a specification would tightly couple the
specification with an implementation, as tools
for validation and source code generation
can be used. There are some API specification
standards out, such as OpenAPI (SmartBear
Software, 2019), which allow developers
to combine the human- as well as the ma-
chine-readable description of an API in one
document. However, this kind of specification
typically has a strict structure, which reduces
the flexibility in writing. Maybe the CIP4 Organ-
ization can consider this as an idea of how to
improve their ICS Documents.
Another question coming up during evalua-
tion pertains to XJDF / XJMF and would need
further conceptional consideration by the CIP4
Organization. In order to submit a job to the
preview generation service, a ZIP Archive, con-
taining an XJMF Message ‘SubmitQueueEntry’,
which references an XJDF Document, which
further references the Artwork PDF has to
be generated. This ZIP Archive has to be sent
to the preview service’s static URL endpoint.
The same situation also pertains to the XJMF
Message ‘ReturnQueueEntry’, which initiates
the response of the service, containing the
generated preview image. The question is why
this indirection is required to have an XJMF
Message, which is referencing the actual XJDF
Document. Of course, the XJMF brings the XJDF
in a context such as ‘submit’, ‘return’, ‘resubmit’,
‘cancel’ as well as provide further information
such as priority. However, this method can
be simplified and streamlined by using Rep-
resentational State Transfer (REST) (Fielding,
2000) and Hypertext Transfer Protocol (HTTP)
(Fiedling & Reschke, 2014). HTTP Methods and

science and technology

50

International Circular of Graphic Education and Research, No. 12 2020

encoding information in the URL can be used
to replace XJMF for any job-related communi-
cation. As a consequence, XJDF Documents can
be sent directly to a service’s endpoint.

Acknowledgements

At this point, I would like to extend my warmest
thanks to Dr. Kevin Byrne and Dr. Martin Delp,
who have provided strong support and kept
me on track towards publishing this first paper.
Both Kevin and Martin provided tremendous
help and support in my personal development,
enabling me to elevate my skills and thought
processes to a level expected in academia. I
would also like to wholeheartedly thank my
wife, Anna, who kept the world around me up
and running while I sat in front of my computer
conducting research and writing this paper.
Without her at my side, such a project would
never have been possible. Another prominent
supporter of this project has been my friend
Windsor Tanner, who assisted me with a sub-
stantial amount of proofreading. Last but not
least, I would like to thank Dr. Martin Habekost
and the two anonymous reviewers who helped
to get this paper published.

References:

1. Armbrust, Fox, Griffith, Joseph, Kath, Konwinski, . .
. Zaharia. (2010, April). A view of cloud computing.
Communications of the ACM, 53(4).

2. Balalaie, Heydarnoori, & Jamshidi. (2016). Micros-
ervices Architecture Enables DevOps: Migration to
a Cloud-Native Architecture. In I. C. Society, IEEE
Software (pp. 42-52).

3. Bernstein. (2014). Containers and Cloud: From LXC to
Docker to Kubernetes. In IEEE Cloud Computing, vol. 1,
no. 3 (pp. 81-84).

4. Bryman, & Bell. (2015). Business Research Methods.
Oxford: Oxford University Press.

5. CEWE. (2018). CEWE Geschäftsbericht 2018.
6. Chelladhurai, J., Chelliah, P. R., & Kumar, S. A. (2016).

Securing Docker Containers from Denial of Service. In
IEEE International Conference on Services Computing
(pp. 856-859). San Francisco, CA, USA: IEEE Computer
Society.

7. Chifor, A. (2017, May 30). Container Orchestration with
Kubernetes: An Overview. Retrieved Decembre 29,
2019, from https://medium.com/onfido-tech/contain-
er-orchestration-with-kubernetes-an-overview-da1d-
39ff2f91edium.com/onfido-tech/container-orchestra-
tion-with-kubernetes-an-overview-da1d39ff2f91

8. Cimpress. (2019 a). OUR STRATEGIC CAPABILITIES.
Retrieved from https://cimpress.com/our-stra-
tegic-capabilities/

9. Cimpress. (2019 b). Cimpress 2018 Anunual Report.
Cimpress.

10. CIP4. (2015, December 2). MIS to Conventional Print-
ing ICS. Retrieved from https://confluence.cip4.org/
display/PUB/MIS+to+Conventional+Printing+ICS

11. CIP4. (2018). XJDF Specification 2.0 Final. Zurich: CIP4.
12. CIP4. (2019 a). CIP4 Organization. Retrieved Septem-

ber 15, 2019
13. CIP4. (2019 b). ICS Documents. Retrieved December 3,

2019, from https://confluence.cip4.org/display/PUB/
ICS+Documents

14. CIP4. (2019 c). Spec Incubator. Retrieved December 08,
2019, from https://confluence.cip4.org/display/TSC/
Spec+Incubator

15. Dikaiakos, M., Pallis, G., Katsaros, D., Mehra, P., & Vakali,
A. (2009). Cloud Computing - Distributed Internet
Computing for IT and Scientific Research. IEEE Internet
Computing, 10-13.

16. Docker. (2019, June 10). What is a Container? Retrieved
from https://www.docker.com/resources/what-con-
tainer

17. Docker Inc. (2019 a, June 24). Best practices for writing

science and technology

51

International Circular of Graphic Education and Research, No. 20 2020

Dockerfiles. Retrieved from https://docs.docker.com/
develop/develop-images/dockerfile_best-practices/

18. Docker Inc. (2019 b). Repositories. Retrieved Decem-
ber 08, 2019, from https://docs.docker.com/dock-
er-hub/repos/

19. Docker Inc. (2019 c). About Docker Engine - Commun-
ity. Retrieved December 09, 2019, from https://docs.
docker.com/install/

20. Docker Inc. (2019 d). Use multi-stage builds. Retrieved
December 22, 2019, from http://docs.docker.com/
develop/develop-images/multistage-build/

21. Fiedling, R., & Reschke, J. (2014, June). Hypertext
Transfer Protocol (HTTP/1.1): Semantics and Content.
Retrieved from https://tools.ietf.org/html/rfc7231

22. Fielding, R. T. (2000). Architectural Styles and the De-
sign of Network-based Software Architectures. Irvine:
UNIVERSITY OF CALIFORNIA.

23. Fischer, T. (2019, June 04). Flyeralarm: Start-up Spirit
– Interview with company founder, Thorsten Fischer.
(B. Zipper, Interviewer) Retrieved from https://www.
beyond-print.net/flyeralarm-start-up-spirit-interview-
with-company-founder-thorsten-fischer/

24. Fisher, C. (2010). Researching and Writing a Disserta-
tion. Harlow: Pearson Education Limited.

25. flyeralarm. (2017, March 13). Hochleistungszuwachs
im Maschinenpark. Retrieved from https://
media-channel.flyeralarm.com/hochleis-
tungszuwachs-im-maschinenpark/

26. flyeralarm. (2019). About us. Retrieved August 10,
2019, from https://www.flyeralarm.com/uk/content/
index/open/id/1499/about-us.html

27. Fogliatto, F. S., Silveira, G. J., & Borenstein, D. (2012).
The mass customization decade: An updated review
of the literature. In Elsevier, Int. J. Production Econom-
ics (pp. 14-25).

28. Foulds, I. (2018). Learn Azure in a Month of Lunches.
Shelter Island: Manning Publications Co.

29. Gibson, J., Eveleigh, D., Rondeau, R., & Tan, Q. (2012).
Benefits and Challenges of Three Cloud Computing
Service Models . In Fourth International Conference
on Computational Aspects of Social Networks (pp.
198-205). IEEE.

30. GitHub. (2019). Mastering Markdown. Retrieved
December 08, 2019, from https://guides.github.com/
features/mastering-markdown/

31. Google Cloud. (2019 a, June 17). Best practices for
building containers. Retrieved from https://cloud.
google.com/solutions/best-practices-for-build-
ing-containers

32. Google Cloud. (2019 b, June 17). Best Practices for
Operating Containers. Retrieved from https://cloud.
google.com/solutions/best-practices-for-operat-

ing-containers
33. Google Cloud. (2019 c). Cloud Run. Retrieved Decem-

ber 09, 2019, from https://cloud.google.com/run/
34. Google Cloud. (2019 d). Stackdriver Logging. Re-

trieved December 22, 2019, from https://cloud.google.
com/logging

35. Google Trends. (2019, June 12). Google Trends. Re-
trieved from https://trends.google.com/trends/

36. Hromis, A. (2019). Docker Reference Architecture:
Docker Logging Design and Best Practices. Retrieved
June 30, 2019, from https://success.docker.com/arti-
cle/logging-best-practices

37. ICC. (2019). Interoperability Conformance Specifi-
cations. Retrieved September 15, 2019, from http://
www.color.org/iccmax/ics.xalter

38. ImageMagick Studio LLC. (2019). ImageMagick.
Retrieved December 08, 2019, from https://image-
magick.org/

39. Islam, A., Irfan, M., Mohiuddin, K., & Al-Kabashi, H.
(2013). Cloud: The Global Transformation. Inter-
national Conference on Cloud & Ubiquitous Comput-
ing & Emerging Technologies (pp. 58-62). IEEE.

40. Keane, R., Robertson, E., & Coursol, S. (2003). United
States Patent No. US 6,650,433 B1.

41. Keung, J., & Kwok, F. (2012). Cloud Deployment Model
Selection Assessment for SMEs: Renting or Buying a
Cloud. In 2012 IEEE/ACM Fifth International Confer-
ence on Utility and Cloud Computing (pp. 21-28). IEEE
Computer Society.

42. Kim, J. (2017, November 22). The API Manifesto Suc-
cess Story. Retrieved from https://www.profocustech-
nology.com/enterprise/api-manifesto-success-story/

43. König, A. (2013). Mass Customization of Print Products.
Berlin, Germany: Beuth University of Applied Sciences.

44. Lenarduzzi, V., & Taibi, D. (2016). MVP Explained: A Sys-
tematic Mapping Study on the Definitions of Minimal
Viable Product. In 2. 4. (SEAA), Davide (pp. 112-119).
Limassol, Cyprus: IEEE.

45. Lin, J. (2018, August 1). API-first software development
for modern organizations. Medium - Better Practices.
Retrieved from https://medium.com/better-practices/
api-first-software-development-for-modern-organiza-
tions-fdbfba9a66d3

46. Maurya, A. (2017, June 12). What is a Minimum Viable
Product (MVP). Retrieved December 23, 2019, from
https://blog.leanstack.com/minimum-viable-product-
mvp-7e280b0b9418

47. Meissner, S. (2019, April 3). XJDF - Standardisierter
Datenaustausch ZWISCHEN Unternehmen. Retrieved
from https://www.slideshare.net/stefanmeissner/
xjdf-datenaustausch-zwischen-unternehmen

48. Mell, & Grance. (2011). The NIST Definition of Cloud.

52

International Circular of Graphic Education and Research, No. 12, 2020

Gaithersburg: National Institute of Standards and
Technology.

49. Onlineprinters. (2019, May 15). 15 Jahre Onlineprint-
ers: Firmengründer Walter Meyer im Jubiläums-
gespräch. Retrieved August 10, 2019, from https://
www.diedruckerei.de/magazin/15-jahre-onlineprint-
ers-firmengruender-walter-meyer/

50. Oracle. (2019). Java Powers Our Digital World. Re-
trieved December 08, 2019, from https://go.java

51. Orenstein, D. (2000, January 10). Application Program-
ming Interface. COMPUTERWORLD, p. 66.

52. Panzar, J. C., & Willig, R. D. (1981). Economies of Scope.
In A. E. Association, Ninety-Third Annual Meeting of
the American Economic Associatio.

53. Pine, B. J. (1993). Mass Customization. Boston, Massa-
chusetts: Harvard Business School Press.

54. Reddy, M. (2011). API design for C++. Elsevier Inc.
55. Ries, E. (2011). The Lean Startup: How Today's

Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses. New York: Crown
Business.

56. Saxoprint. (2019). Zahlen & Fakten. Retrieved August
10, 2019, from https://www.saxoprint.de/ueberuns/
unternehmen/fakten

57. Silberston, A. (1972). Economies of Scale in Theory and
Practice. In W. o. Society, The Economic Journal, Vol.
82, No. 325, Special Issue: In Honour of E.A.G. Robin-
son (pp. 369-391).

58. Singh, V., & Peddoju, S. K. (2017). Container-based
Microservice Architecture for Cloud Applications.
In IEEE, International Conference on Computing,
Communication and Automation (ICCCA2017) (pp.
847-852). IEEE.

59. Singleton, A. (2016). The Economics of Microservices.
In I. C. Society, IEEE Cloud Computing (pp. 16-20). IEEE.

60. SmartBear Software. (2019). API Development for
Everyone. Retrieved January 07, 2020, from https://
swagger.io

61. Spring. (2019). Spring Boot. Retrieved December 22,
2019, from https://spring.io/projects/spring-boot

62. Statista. (2019, September 7). Umsatz der flyeralarm
GmbH in den Jahren 2006 bis 2017 (in Millionen Euro).
Retrieved from https://de.statista.com/statistik/daten/
studie/388615/umfrage/umsatz-von-flyeralarm/

63. Sun, L. (2015, November 4). Container Orchestration =
Harmony for Born in the Cloud Applications. Retrieved
December 29, 2019, from https://www.ibm.com/
blogs/cloud-archive/2015/11/container-orchestra-
tion-harmony-for-born-in-the-cloud-applications/

64. Sysdig. (2018, May 29). Retrieved June 12, 2019,
from 2018 Docker usage report.: https://sysdig.com/
blog/2018-docker-usage-report/

65. Trieloff, L. (2017, June 2). Three Principles of API First
Design. Medium - Adobe Tech Blog. Retrieved from
https://medium.com/adobetech/three-principles-of-
api-first-design-fa6666d9f694

66. Weinman, J. (2016). Migrating to or away from the
Public Cloud. IEEE Cloud Computing, pp. 6-10.

67. Wiggins, A. (2017). The Twelve Factors. Retrieved June
24, 2019, from https://12factor.net/

68. WIRmachenDRUCK. (2019). WIRmachenDRUCK –
druckreifer Erfolg. Retrieved August 10, 2019, from
https://www.wir-machen-druck.de/unternehmen.
html

69. Zalando. (2019 a). Zalando RESTful API and Event
Scheme Guidelines. Retrieved September 14,
2019, from https://opensource.zalando.com/rest-
ful-api-guidelines

70. Zalando. (2019 b). Zalando's Engineering and Archi-
tecture Principles. Retrieved December 03, 2019, from
https://github.com/zalando/engineering-principles

Stefan Meissner

Stefan Meissner, Dipl.-Ing. (FH)
PhD Candidate TU Dublin

Dublin, Ireland

d06114283@mytudublin.ie

