Physical evaluation of print quality

Li Yang (li.yang@innventia.com)

Innventia, Sweden

What is print quality ?

mottling

uncovered areas

missing dots

colour gamut

gloss and gloss variation

visual perception

Scope of the presentation

Print quality is a complex concept

– A print + a viewer.

– Physical factors (3D ink placement)

- Materials & printing process
- Visual characteristics

Acuity, contrast sensitivity, etc.

Physical evaluation methods

INNVENTI/

- Paper properties
- Ink properties
- Ink-paper interaction

Physical factors

- Paper properties
 - Surface roughness
 - Porosity
 - Fluorescence
- Ink properties
 - > Viscosity, ink tack, …
 - Ink transfer and ink setting
- Ink-paper interaction
 - Ink-spreading
 - Ink-penetration

Surface roughness

- Surface roughness affects inktransfer.
- Low surface roughness → high paper gloss and print gloss.
- To reduce surface roughness
 - > Adding fillers
 - Calendering
 - Surface coating

Porosity

- Paper is a porous media
- The porous (pore-size) distribution governs ink absorption and ink setting.
- Adding fillers creates more small

Cross section (uncoated)

Cross section (coated)

100

INNVENTIA

Fluorescence

Fluorescent contributions to the colors of the print solids

Paper properties

- Surface roughness
- Porosity
- Fluorescence
- Ink properties
 - > Viscosity, ink tack, …
 - Ink transfer and ink setting
- Ink-paper interaction
 - Ink-spreading
 - Ink-penetration

Ink properties

- The role of ink
 - Selectively absorbs light and creates color.
 - Ink flows on paper surf. and penetrates into paper.
- Important ink properties
 - -Viscosity: ink spreading and penetration.
 - Ink tack: ink stickiness after printing, ink transfer and ink setting.

Ink transfer

Non mechanical contact

Ink rollers Water rollers Plate cylinder Water Offset cylinder Paper Impression cylinder 2011-09-20

Mechanical contact/pressure

Ink transfer and ink setting

Ink sequence: cascading order of ink tack, K,C,M,Y

Ink transfer and ink setting

Ink transfer determines the initial size of the ink dots

Important source of physical dot gain and print mottle

Some examples of print mottle

Uneven print gloss

Uneven print density

2011-09-20

- Paper properties
 - Surface roughness
 - Porosity
 - fluorescence
- Ink properties
 - > Viscosity, ink tack, …
 - Ink transfer and ink setting
- Ink-paper interaction
 - Ink-spreading
 - Ink-penetration

Ink-paper interaction

Physical processes

- Ink spreading
- Ink penetration
- Carrier/pigment separation
- Diffusion

Chemical processes

- Adsorption
- Polymerisation

Inkjet droplet on coated grade

2011-09-20

Can be altered by calendering, coating, sizing, ...

Ink spreading

- Cause physical dot gain
- Affecting factors
 - Surface tension of the ink
 - Surface energy of the paper
 - Surface roughness
- Rough description for print
 - Paper surface is not flat
 - Paper sucks
 - Vaporization
 - Non-equilibrum state

$$\cos\theta_c = \frac{\gamma_{sg} - \gamma_{sl}}{\gamma_{lg}}$$

2011-09-20

. . .

Ink penetration

- Ink fills the surface pores and is sucked into paper's pores.
- Darcy Law

$$\frac{dV}{dt} = -\frac{KA\Delta P}{\eta L}$$

- Paper's properties
 - Permeability, K
 - Capillary pressure, ΔP
- Ink properties
 - Viscosity, η

Ink penetration

Can be altered by coating, sizing, ...

2011-09-20

Physical evaluation methods

- Determination of physical dot gain

 Resulting from ink-transfer and ink-spreading
- Quantitative determination of ink penetration
 Resulting from ink-setting process

Determination of dot gain

- Physical dot gain
 - Caused by ink-transferring and ink-setting
- Optical dot gain
 - Caused by lateral light scattering
- To separate physical and optical dot gain needs tools
 - Model based methods
 - Imaging processing-based methods

$$a_{eff} = a_{phy} + \Delta a_{opt} \qquad a_{phy} = a_0 + \Delta a_{phy}$$

There are two types of methods for determination of dot gain

- Methods based on physical model
 - -Reflectance model
 - -Transmittance model
- Methods based on image processing
 - Histogram thresholding
 - –Line scan

— . . .

2011-09-20

Methods based on physical model

All the major physical phenomena have to be propriate accounted.
 – Light diffusion

- Inter-facial reflections

- Fluorescence

— ...

2011-09-20

Spectral estimations – Magenta, $\Delta E_{\text{max}} = 2.1$ $\sigma_0 = 20, 40, 60\%$,

Microscopic imaging: Histogram analysis

- The average of the peak positions

H(R)

Microscopic imaging: Line scan

- Line scans across halftone dots
- Threshold, *R_t*: boundary between dot and paper
 - Find maximum rate of change: dR/dx
- Sufficiently accurate for light and middle tones; unreliable for dark tones

Physical dot gain of offset prints

NNVENTIA

Determination of ink-penetration

(a) substrate: $W_1F_0S_0X_0$

Effect of ink-penetration on printed color

Color gamut of prints on two commercial papers (similar color before printing)

Dynamic ink-paper interaction

Online Linting Measurement (OLM)

Summary

- Quality of print is affected by the materials' properties.
- Printing processes particularly ink transfer, ink spreading and ink penetration are important for print quality
- Paper making and paper properties have great impact on these processes and print quality
- Methods have been developed for determining these physical phenomena and their effects on print quality.

