The influence of accelerated ageing on colour difference of conventional and hybrid ink prints varnished with different amount of coatings

IC 09, Ghent

Karlović I., Debeljak M., Novaković D., Gregor-Svetec D.

Introduction

- ☐ The increased use of overprint and spot varnish in the graphic arts
- Used for protection and visual enhancement as well for value added printing
- ■Emergence of new type of varnishes and inks (hybrid, UV)
- ■A strive for consistent quality control in the area of correct colour reproduction

Coating and varnishing

- ■Varnishes are applied directly to the substrate by rollers or coating forms in a coating unit.
- ■With the applied varnish some properties of the surface are changed and thus the amount of the reflected light.
- ■With the variations of the coating amount these changes modify differently the properties of the prints.

Print surface

Thickness and amount variation

Roller type of coaters

- ☐ Thickness and amount variation by nip, or speed of the rollers
- ☐ Heavy amounts and very tick

Anilox coaters

- ☐ Thickness and amount not influenced by speed constant volume.
- Amount defined by the anilox roller engraving value

Appearance and protection

- Aside from aesthetic appearance factors, liquid coatings and varnishes can offer a range of desirable rubscuff, water, chemical, packaged product and light (fade) resistances.
- ■Tougher products are those that are based on cross-linked chemistry where tight knit dry films are developed when the liquid products are fully dried or cured.

Aqueous Coatings

- Aqueous coating:
- ■Polymeric resin ,Wax and/or silicone
- Surfactants, Additives
- ■Solvents, defoamers and optical brighteners.
- □60-70% water, 25-35% solid content and 5% additives
- Quick drying, applied by chambered doctor blade anilox roller system
- \square 2-4 g/m²

UV Coatings

- Radical and cationic UV coatings
- Synthetic resins with embedded photoinitiators
- Recommended application by anilox roller
- □ 100 % dry solid content
- Quick low energy drying
- □Similar amount as aqeous when using same anilox roller.

Inks conventional vs. hybrid

Conventional and

IR-ink

Pigments

Mineral oils

Vegetable oils

Resins

Driers

Additives

Hybrid ink

Pigments

Vegetable oils

Vegetable based oligomers

Photoinitiators

Additives

UV-ink

Pigments

Monomers

Prepolymers

Oligomers

Photoinitiators

Additives

Ageing

- □ A frequently occurring direct contact with water or a permanently high humidity of air combined with elevated temperatures and direct sun exposure also affects the printed ink negatively.
- Coatings formulated and stated as resistant to these influences – protection.
- ■No yellowing typical to oil based varnishes but some photo initiators can cause yellowing.

Methods and materials

- ■KBA Offset press with additional coating unit (inline)
- ■Anilox roller with 60L/cm and 90L/cm
- ☐Glossy coated paper Type 1 according to ISO 12647-2 (2004)
- □Sun Chemical Hartmann World Series inks
- Prestofix Hochglanzlack H6055/55 glossy aqueous and Prestofix Mattlack H260/55 matte aqueous coating

Methods and materials

- ■Sun Chemical HyBrite Inks
- ■Sun Chemical Glossy UV coating
- Moist heat treatment by SIST ISO 5630-3:1997; Part 3
- ■80°C, 65% relative humidity
- □1,2,3,6 days
- □ Colour difference calculation D50 and 20

Samples with no coating

Glossy aqueous 90L/cm

Glossy aqueous 60L/cm

Matte aqueous 90L/cm

Matte aqueous 60L/cm

Summary of results

- ☐ Hybrid inks with no coating gave better results then the conventional inks without varnish for all colours.
- Smallest variation between colours :black.
- For conventional inks coated with glossy aqueous coating coated samples gave smaller colour offset during the ageing.
- Matte coated conventional inks also gave a smaller colour change during ageing than the uncoated samples but with variation between amount and colour.
- For hybrid inks larger amount of coating resulted with smaller colour difference for cyan, yellow and black.

Conclusion

- □ Coatings mainly gave better colour change resistance then the uncoated samples, with variations between amounts of coating and colours.
- □Some larger variations between the samples (aqueous coated samples similar behavior –glossy and matte).
- UV coating different changes in colour difference depending on colour
- Hybrid inks with UV coating slightly smaller changes.
- ☐ Further investigation in chemical and physical changes.