**45th International Circle of Educational Institutes** for **Graphic Arts, Technology & Management Ryerson University, Toronto, Canada Effect of Gravure Process Variables on** Pri **Defects in Shrink Film** \*Akshay V. Joshi, \*\*Swati Bandyopadhyay **Printing Engineering Department \*Pune Vidyarthi Griha's College of Engineering and Technology** Pune, INDIA

**\*\*Jadavpur University** 

Kolkata, India



### Introduction

- Today the brand owners are getting "package conscious".
- The global market for shrink sleeves is rising by 10% to 15% every year.
- PVC and PETG films holds the major share for this application.







#### Introduction

- The global consumption of PVC shrink film in 2011 has increased by 59% since 2003.
- PETG ranks next after PVC in the shrink sleeve consumption.

Material Consumption for Shrink Sleeves by 2011









### Introduction

 These films provide eye catching, 360° wrap around graphics that conforms to the product contours.



- It is essential to obtain superior quality printability on shrink films that can complement well with a package's exterior.
- Printability is defined as an optimal amalgamation of ink, substrate and process parameters.







#### Introduction

- Printability Indicators on shrink films:
- 1. Densitometry
- 2. Spectrophotometry and
- 3. Print defects such as voids, missing prints and dot skips.

















#### **Gravure Process**

- The growth and success of gravure are attributed to the simplicity of the process with fewer variables to control.
- Key Variables: Viscosity, Speed, Pressure, Hardness, Doctor blade, Cell geometry.









#### Introduction

- Printing on shrink film is a major challenge for a printer.
- The surface imperfections in these films cannot be totally eliminated during their manufacturing.
- The areas around the anomalies are starved of ink, leading to print defects like voids and dot skips.







### Introduction

- This results in internal complaints and rejections, customer grievances, cost to company against claim value and environmental concerns.
- Efforts to prevent such defective prints from being shipped to the customer involve multiple inspection and added costs.
- Reduces the product margin.
- Hence, it is of utmost importance to study the various plausible factors that can affect print voids.



### Methodology

- Selection of Gravure Process Variables
- Layout Design and Cylinder Preparation
- Baseline Identification
- Design of Experiments
- Analysis
- Identifying the significant factors and optimal settings
- Verification and checking for consistency







Methodology Layout Design

 A monotone layout comprising of a skin tone, solid patches, step wedge, logo and surface/reverse text.









### Methodology

- Electronic Engraving with 175 and 200 LPI at 45<sup>o</sup> cell angle.
- Cell Depth: 42 µm and 36 µm with an opening of 140 µm and 127 µm.









Methodology Baseline Identification

 The production runs were conducted on the PVC film (40µ) for five days on a pilot gravure press.



• Parameters: 175 LPI Line screen, 19 sec viscosity,

100 m/min speed, 70 shore A hardness and 3.5 kg/cm<sup>2</sup> pressure.







Methodology Baseline Identification

- The print voids were captured using DIGITUS microscope.
- Magnification: 200X.





Unprinted Area

- Processing: Dexel Imaging 2.4.4
- Sample Size: 25 sheets (250 mm x 460 mm).





### **Methodology: Baseline Identification**

circle

of educational institutes for graphic arts; technology and

| <b>Production Runs</b>                                  | Mean Void Area/Sheet (mm <sup>2</sup> ) | Std. Dev. |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------|-----------|--|--|--|--|
| P1                                                      | 0.1897                                  | 0.0845    |  |  |  |  |
| P2                                                      | 0.3078                                  | 0.0606    |  |  |  |  |
| P3                                                      | 0.2684                                  | 0.0612    |  |  |  |  |
| P4                                                      | 0.269                                   | 0.0652    |  |  |  |  |
| P5                                                      | 0.1005                                  | 0.0318    |  |  |  |  |
| Baseline                                                | 0.2271                                  | 0.0607    |  |  |  |  |
| Target: 50% of the Baseline i.e. 0.1135 mm <sup>2</sup> |                                         |           |  |  |  |  |
| A                                                       |                                         | jand.     |  |  |  |  |

### **Methodology: Screening Experiment**

• A general full factorial design with 54 runs and 2 replicates.

| S. No.                  | Variables   | Unit    | Levels |     |      |
|-------------------------|-------------|---------|--------|-----|------|
|                         |             |         | Low    | Mid | High |
| 1                       | Line Screen | LPI     | 175    | -   | 200  |
| 2                       | Viscosity   | sec.    | 17     | 19  | 21   |
| 3                       | Speed       | m/min.  | 80     | 100 | 120  |
| 4                       | Hardness    | Shore A | 60     | 70  | 80   |
| international<br>circle |             |         |        |     |      |

### **Methodology: Analysis**



Reduction in void area with increase in hardness at lower line screen.







### Methodology

### Analysis

- Significant factors: Hardness and Line screen.
- Important factors: Viscosity and Speed.









of educational institutes for graphic arts: technology and

## Effect of Gravure Process Variables on Print Defects in Shrink PVC Film

### **Methodology: Analysis**

| Coef                  | SE Coef                                                                       | т                                                                                                                     | Р                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -5.47998              | 0.941773                                                                      | -5.8188                                                                                                               | 0.000                                                                                                                                                                                       |
| 0.0 <mark>3085</mark> | 0.00466                                                                       | 6.62016                                                                                                               | 0.000                                                                                                                                                                                       |
| 0.01345               | 0.00405                                                                       | 3.32125                                                                                                               | 0.001                                                                                                                                                                                       |
| 0.00996               | 0.003586                                                                      | 2.77671                                                                                                               | 0.007                                                                                                                                                                                       |
| 0.06359               | 0.013257                                                                      | 4.79661                                                                                                               | 0.000                                                                                                                                                                                       |
| -0.00037              | 0.000066                                                                      | -5.67426                                                                                                              | 0.000                                                                                                                                                                                       |
| -0.00012              | 0.000051                                                                      | -2.32006                                                                                                              | 0.022                                                                                                                                                                                       |
|                       | Coef<br>-5.479988<br>0.030855<br>0.013455<br>0.009966<br>0.063599<br>-0.00037 | CoefSE Coef-5.479980.9417730.030850.004660.013450.004050.009960.0035860.063590.013257-0.000370.000066-0.000120.000051 | CoefSE CoefT-5.479980.941773-5.81880.030850.00466 <b>6.62016</b> 0.013450.004053.321250.009960.0035862.776710.063590.013257 <b>4.79661</b> -0.000370.000066-5.67426-0.000120.000051-2.32006 |





### **Methodology: Analysis**

of educational institutes for graphic arts: technology and

| Source                 | DF  | Seq SS | Adj SS  | Adj MS | F       | Р        |
|------------------------|-----|--------|---------|--------|---------|----------|
| Regression             | 6   | 2.8393 | 2.8393  | 0.4732 | 103.235 | 0.000000 |
| Line Screen            | 1   | 0.3478 | 0.2009  | 0.2008 | 43.827  | 0.000000 |
| Viscosity              | 1   | 0.0299 | 0.05056 | 0.0505 | 11.031  | 0.001264 |
| Speed                  | 1   | 0.0694 | 0.0353  | 0.0353 | 7.71    | 0.006591 |
| Hardness               | 1   | 2.2174 | 0.1055  | 0.1054 | 23.007  | 0.000006 |
| Line Screen*Hardness   | 1   | 0.15   | 0.1476  | 0.1475 | 32.197  | 0.000000 |
| Speed*Hardness         | 1   | 0.0246 | 0.0246  | 0.0246 | 5.383   | 0.022434 |
| Error                  | 97  | 0.4446 | 0.4446  | 0.0045 |         |          |
| Lack of Fit            | 47  | 0.2563 | 0.2563  | 0.0054 | 1.447   | 0.099977 |
| Pure Error             | 50  | 0.1884 | 0.1884  | 0.0037 |         |          |
| Total<br>international | 103 | 3.2839 |         |        |         |          |

IC 2

TORONTO



### Methodology

### Analysis

- Interactions: Hardness with Speed and Line screen.
- Best Settings: 175 LPI, 17 sec, 80 m/min and 80 shore A.



Hardness





### **Methodology: Verification and Consistency**

- The best settings (175 LPI line screen, 17 sec viscosity, 80 m/min speed and 80 shore A hardness) was confirmed by conducting a press run.
- It was checked for its consistency by re-running for 5 days.

| Trials       | Line<br>Screen<br>(LPI) | Viscosity<br>(sec) | Speed<br>(m/min) | Hardness<br>(shore A) | Void Area/<br>Sheet (mm <sup>2</sup> ) | Std Dev.<br>Void Area |
|--------------|-------------------------|--------------------|------------------|-----------------------|----------------------------------------|-----------------------|
| Verification | 175                     | 17                 | 80               | 80                    | 0.07921                                | 0.0417                |
| Consistency  | 175                     | 17                 | 80               | 80                    | 0.07622                                | 0.0569                |





### **Methodology: Production Run and Consistency Run**

The void area/sheet for all the consistency runs were well below the set target of 0.1135 mm<sup>2</sup>.







### **Methodology: Production Run and Verification Run**

| Trials           | Void Area/Sheet (mm <sup>2</sup> ) | Std. Dev. |
|------------------|------------------------------------|-----------|
| Production Run   | 0.2271                             | 0.0607    |
| Verification Run | 0.07921                            | 0.0417    |

- Significant improvement from Production to Verification Run.
- The void area is minimized to 65.12%.
- The set target 0.1135 mm<sup>2</sup> was achieved for viscosities ranging between 17 to 19 sec, speed ranging between 80 to 120 m/min
  at 175 LPI line screen and 80 shore A hardness.



### Conclusion

 Gravure printing being widely used for shrink applications, it becomes very necessary for the printer to minimize print voids so as to reduce losses and wastage to a greater extent.

 Optimization of the process parameters itself has a solution to these issues.







#### Conclusion

- Identifying the correct set of parameters can prove to be beneficial for the industry.
- The analysis revealed line screen and hardness as the most influential factor in minimizing the void area.
- The optimal parameters (175 LPI, 17 sec, 80 m/min and 80 shore A) were identified that minimized the void area/sheet to 65.12% which is well above the set target.







### Conclusion

- In today's competitive environment, companies of all scales are feeling the pressure to streamline their business in order to save money and simultaneously meet the growing demand for environmental responsibility and accountability.
- Hence, if these changes are successfully implemented on a large scale, they could accomplish in meeting both environmental and cost saving goals for a company.







### **Acknowledgements**

- MANISH PACKAGING PVT. LTD., SURAT
- ACUPRINT SYSTEMS, MUMBAI
- ROYAL INKS, SURAT
- K. D. JOSHI, PUNE
- QC SERVICES, PUNE





