

Investigation of the aging process of printed products in display windows

Rozália Szentgyörgyvölgyi, Ákos Borbély

Óbuda University, Rejtő Sándor Faculty of Light Industry and Environmental Engineering, Doberdó u. 6., Hungary

4 Printed front banner, 5 Manikin, 6 Track

Introduction

- The visual quality of printed products is vulnerable to this kind of radiation; the aging process has definitely visible signs.
- Mechanical and optical changes are induced by the joint effect of incoming optical radiation and temperature fluctuations.
- Our study focused on the changes in visual quality of test prints on different substrates printed by digital technologies. We used weathering instrument to investigate the resistance of digital prints against filtered sunlight.

Examination methods

Universitas Budensis

Test printing was performed under normal operating conditions: t=21-23 °C, RH 40–45%

Digital printers:

Mimaki JV3-160sp solvent inkjet

Durst RHO 320 R UV inkjet

Examination methods

Universitas Budensis

We used a Suntest XLS+ weathering instrument to

investigate the resistance of digital prints against filtered sunlight.

Examination methods

UNIVERSITAS BUDENSIS Optical density, tone value increase and color differences and color gamut changes were measured during stages of the accelerated aging process.

Printing materials

UNIVERSITAS BUDENSIS

Printing materials

Substrates properties

Properties	#1	#2	#3
Caliper, µm	90	300	160
Grammage, g/m²	120	270	200
Lifetime outside, year	2	3	10/54

Budensis

versitas

Test prints

Universitas Budensis

1 – color control patches of primary and secondary colors

2 – 400 patch test chart for gamut sampling

www.uni-obuda.hu

UNIVERSITAS BUDENSIS

Optical properties

- Reflectance spectrophotmeter with 45a:0 measurement geometry
- Spectral range: 380 nm 730 nm
- Process colours
- Secondary colours
- Tone value increase
- Colour differences

Measured optical density values of CMYK process colors on substrates printed with both printers

	Optical density								
Sub- strate	Mi	maki J'	V 3-160	sp	Durst RHO 320 R				
	solvent inkjet				UV inkjet				
	С	Μ	Y	K	С	Μ	Y	K	
1	2.33	1.95	1.48	2.24	1.08	1.37	1.39	1.94	
2	1.75	1.49	1.30	1.75	1.21	2.18	1.31	2.18	
3	1.69	1.61	1.36	1.70	0.95	1.39	1.33	1.91	

<u>Jniversitas Budensis</u>

Mimaki JV3 160 sp

Substrate

← 3.

UNIVERSITAS BUDENSIS

UNIVERSITAS

BUDENSIS

Results – Colour gamut

UV inkjet

Substrate

← 1.

← 2.

u

Investigation of the resistance of digital prints against filtered sunlight

Test parameters:

Equipment: Suntest XLS+ Standard: ISO 4892-2 method B6 Filter: window glass Irradiance range: 300-400 nm Temperature: 24 - 65 °C

Irradiance in 48 hours: 7533 kJ/m² Time: 144 hours

Results – TVI

TVI curves in Avery MPI 3001 self-adhesive foil prints

Results – ΔE^*_{ab}

	ΔE * _{ab144}							
Substrate	Mimaki JV3 160 sp							
	С	Μ	Y	Κ	R	G	В	СМҮ
1	0.25	1.63	1.25	1.16	1.35	1.14	1.64	0.87
2	2.69	3.15	1.84	1.74	3.07	2.98	3.45	3.78
3	1.85	1.61	1.29	0.36	1.93	1.17	1.57	0.66
Substrate	Durst RHO 320 R							
	С	Μ	Y	Κ	R	G	В	СМҮ
1	1.09	2.52	1.69	2.15	3.54	1.43	2.46	1.55
2	0.62	2.28	2.08	0.82	2.62	1.62	2.05	1.22
3	0.62	1.64	2.86	0.74	0.52	1.72	0.55	0.57

www.uni-obuda.hu

KTATASI P

Gamut solids of test prints on Emblem Poster paper substrate (left: Mimaki JV3 160 sp, right: Durst RHO 320 R)

UNIVERSITAS BUDENSIS

Results – Colour gamut

	Relative gamut (%)					
Substrates	Mimaki JV3 160 sp		Durst RHO 320 R			
	0 h	144 h	0 h	144 h		
Avery MPI 3001	1	0.97	1	0.94		
Ferrari Decolit 251	1	0.92	1	0.94		
Emblem Poster						
Paper 200	1	0.95	1	0.99		

Relative changes of printable gamut

Conclusions

- In our study we investigated the resistance of digital prints against filtered sunlight on three types of substrates, printed with solvent and UV inks on inkjet printers.
- We experienced visible changes of the test prints caused by the irradiation. The magnitude of the changes depended on the substrate and the printer used.

- We found that in case of primary and secondary colors the irradiation caused $1 - 4 \Delta E^*_{ab}$ color differences, while printable color gamut decreased ~ 5%.
- Our findings may contribute to developments aimed at the improvement of the accelerated aging of digital prints.

Thank you for your kind attention

