

Image analysis techniques for assessing print quality

<u>Ivana Tomić</u>, Igor Karlović, Dragoljub Novaković, Ivana Rilovski

Print quality control

Defining quality

 Print quality had been defined through many attributes:

Quality attributes

Grouping quality attributes enables efficient quality assesment

Basic print quality attributes by ISO

 ISO 13660 (for digital printing) defines procedures and algorithms for quantifying basic print quality attributes

Character and Line

- O Blurriness
- 2 Raggedness
- Line width
- **4** Darkness, character
- **6** Contrast
- **6** Fill
- Extraneous marks, character field
- Background haze, character field

Large Area

- **1** Darkness, large area
- 2 Background Haze
- Graininess
- Mottle
- 6 Extraneous marks, background
- O Voids

Evaluating print quality attributes

 Quality attributes evaluation involves using some of the image analysis technique

What are the elements of importance?

Image elements assessment

• Image elements to be assessed consists of:

Dot quality assessment

- Printed dot fidelity is determined by evaluating dot area and roundness
- Area gives an information about tonal value increase (dot gain)
- Roundness indicates reproduction of a fine details and can be measured as:

Roundness = $4\pi (A/p^2)$

A-area

p - perimeter

Dot roundness

 The closer to 1 the roundness, the better the quality of the dot

Line quality assessment

- Line evaluation could include: area, perimeter, width, raggedness etc.
- Evaluation of area and perimeter gives the information about ink bleeding

Intercolour bleed = (1154-708)/4

Line raggedness

Line width and raggedness indicates amount of wicking

Solid area evaluation

- Solid area evaluation could include: micro, macro and gloss uniformity
- Micro uniformity implies measuring of high frequency noise and defines graininess
- Macro uniformity can be assessed by measuring low frequency noise indicating the degree of mottle

Measuring micro uniformity

• Metric of graininess defined by ISO 13660 is the standard deviation of density of a number of small areas that are 42 μm square

Measuring macro uniformity

- Mottle measurement method described in ISO 13660
- Dividing the area into a number of small square cells and computing the variations in the reflectance or density in those cells
- Area to be measured should be no less then
 16 x 16 cm

Measuring gloss uniformity

 Gloss uniformity is very important parameter since it indicates uneven distribution of coating on print

Distinctness of image (DOI)

- Defines the deviation of the spread of light reflected at the specular angle
- DOI is a good indicator of:
 - incorrect particle size/distribution in printing and enhancing
 - incorrect coating flow
 - inappropriate cure time or temperature
 - application problems etc.

DOI applicability in printing

 Symptoms of poor DOI can be visually perceived as brush marks, "orange peel", waviness or other structures visible on the surface

Measuring DOI according to ASTM D5767 - 95(2004)

 Method 1: Measuring light reflected at a specular angle and at the angle slightly of the specular

 $DOI=100 (Rs-R_{0.3}) / Rs$

DOI range: 0-100

Measuring DOI

- Method 2: Projecting the light through a small slit on the specimen surface and measuring its reflected image intensity through a sliding combed shutter
- Method 3: Projecting the light through the pattern on the specimen surface and measuring reflected image intensity in order to provide a value of image clarity

Slanted edge method

Evaluates image sharpness according to ISO 12233

Sharpness analysis for calculating DOI

 Step 1: Obtaining the reflectance profile (Edge spread function - ESF) from the digitalized image

Sharpness analysis for calculating DOI

- Step 2: Calculating line spread function (LSF) as a first derivative of ESF
- Step 3: Aplying a Fourier transform to LSF in order to obtain Modulation transfer function (MTF)
- Step 4: Incorporating human sensitivity into calculation in order to filter out the noise - obtaining subjective quality factor (SQF)

Text quality assessment

Determine readability by measuring letters area and perimeter

Is the image analysis flawless?

Possible issues

- Providing enough information with currently available sampling devices
- Errors in calculations due to the inaccurate selection of certain element
- Some methods are not precisely defined and need refinement

Should the image analysis be used for print quality evaluation?

Conclusion

- Quality control methods based on image analysis provide enough information about quality of important attributes in printing
- They can easily be implemented
- Can be combined and used for developing image quality metrics

Thank you for your interest and attention.

6
INTERNATIONAL
SYMPOSIUM ON GRAPHIC
ENGINEERING AND DESIGN

UNIVERSITY OF NOVI SAD
FACULTY OF TECHNICAL SCIENCES
DEPARTMENT OF GRAPHIC ENGINEERING
AND DESIGN

15™

16™

November

