

University of Zagreb Faculty of Graphic Arts

Sanja Mahović Poljaček, Tamara Tomašegović, Tomislav Cigula, Diana Milčić

APPLICATION OF FTIR IN STRUCTURAL ANALYSIS OF FLEXOGRAPHIC PRINTING PLATE

Content

- Flexographic printing technique
- Flexographic printing plates
- Post-treatment of printing plates
- Quality control in flexography
- Experimental
- Results and discussion
- Conclusion

Flexographic printing technique

- Direct printing technique
- Packaging industry
- Printing on a wide range of substrates
- Printing plates based on photosensitive monomers
- Computer to Flex platemaking procedure

Flexographic printing plates

- Flexibility of the plate: advantage and weakness
 - Printing on a wide range of materials,
 - Possibility of deformation of printing elements because of the straining on plate cylinder and pressure in printing process
- A number of parameters which should be controlled, standardized and defined in the reproduction workflow

LAMS technology

- a) Back exposure
- b) LAMS ablation
- c) Main exposure
- d) Chemical and mechanical developing
- e) Drying/stabilization
- f) Post-treatment (UVA and UVC)

Post-treatment of printing plates

 UVA post-treatment is performed in order to finish the photopolymerization process after the developing and drying/stabilization

 UVC post-treatment has been commonly performed after the UVA post-treatment in order to terminate the photopolymerization process

Quality control in flexography

- Flexography printing process depends on a number of parameters which should be controlled and defined in the reproduction workflow:
 - Properties of the printing plate, printing substrate and printing ink,
 - Quality of the file adjustment,
 - Type of the anilox roller,
 - Developing process,
 - 0 ...
- Existing standards for flexography are mainly focused on the process control of screen ruling and reproduction of colours, printing substrates and dot gain

The aim of the paper

 The aim of this paper was to characterize the changes in chemical structure of the flexographic printing plate by means of FTIR spectroscopy

Experimental

- Solvent-washable, SBS copolymer LAMS-based printing plates with thickness of 1,14 mm were used
- Standard conditions of the printing plate production
 - Back and main exposure
 - Developing process
 - Stabilization period
- The parameters which were varied in this paper were duration of the UVA and UVC post-treatments (1 – 20 min)

- On the printing plate samples, surface free energy was calculated by means of a goniometer, Data Physics OCA 30
- Surface free energy of the samples was calculated based on the average value of the measured contact angles by using the OWRK method

Liquid	Surface free energy γ (mNm ⁻¹)		
	γ_{Iv}	γ ^d lv	γ ^p Iv
Diiodomethane (Ström et al.)	50.8	50.8	0.0
Glycerol (van Oss et al.)	64.0	34.0	30.0
Water (Ström et al.)	72.8	21.8	51.0

Surface free energy (γ_{lv}) and their dispersive (γ_{dlv}) and polar (γ_{plv}) components for probe liquids

- In order to define the changes in surface structure of the photopolymer material FTIR (Fourier transform infrared spectroscopy) was used
- Vibrations and rotations at a certain wavelength in the IR area are detected by IR spectrometry and can help in determining molecular composition and impurities in the sample
- In this paper FTIR was used for analysis of the variation in chemical structure of photopolymer material which can happen during the post-treatment platemaking phase

Results and discussion

 Changes in surface free energy of the photopolymer with variations in UVA post-treatment

 Changes in surface free energy of the photopolymer with variations in UVC post-treatment

 FTIR spectra of photopolymer with different UVA posttreatment

 FTIR spectra of photopolymer with different UVC posttreatment

Conclusion

 Printing plate samples for this paper were made in defined processing conditions with variations of the UVA and UVC post-treatment

 Surface free energy calculations and FTIR spectra analysis were performed on samples of flexographic printing plates

 Prolonged UVA post-treatment results with the decrease of the total surface free energy, especially its dispersive component

- Prolonged UVC radiation results in process similar to the oxidation of the material – integration of the oxygen in form of certain functional groups in the surface layer of the printing plate, leading to the increase in the total surface free energy
- The changes in the surface free energy can influence the process of printing ink transfer from anilox roller to the printing substrate in the reproduction process
- FTIR analysis proved to be an useful method for characterization of changes in the photopolymer material

Thank you for your attention!

University of Zagreb Faculty of Graphic Arts