47th International Circle of Educational Institutes for Graphic Arts, Technology & Management California Polytechnic State University, California, USA

Effect of Electrostatic Assist and Gravure Process Parameters on Defect Reduction in Shrink PVC Film

> Dr. Akshay V. Joshi Printing Engineering Department

Pune Vidyarthi Griha's College of Engineering and Technology Pune, INDIA

Introduction

- Global market for shrink sleeves is rising by 10%-15% per year.
- Major Share: PVC and PETG films.
- It is essential to obtain superior quality printability on shrink films.
- Printability is defined as an <u>optimal</u> <u>amalgamation of ink, substrate and</u> <u>process parameters</u>.

■PVC ■PET-G ■PP/PO ■OPS ■PE ■Others

 Printability Indicators: Densitometry, Spectrophotometry and Print defects such as mottle and dot skips.

Introduction

- Gravure printing has always been widely accepted process for printing on shrink films.
- Process Parameters:
 Substrate, Ink Viscosity,
 Pressure, Press speed,
 Impression Hardness,
 Doctor blade, Screen
 Ruling.

Problem Identification

Introduction

- Printing on shrink PVC film is a major challenge for a printer.
- The surface imperfections in these films cannot be totally eliminated during their manufacturing.
- It results in print defects like mottle and dot skips, thereby leading to mounting wastage of ink, solvent, time and material.

P. V. G's College of Engineering & Technology, Pune, INDIA

Introduction

- This results in internal complaints and rejections, customer grievances, cost to company against claim value and environmental concerns.
- Efforts to prevent such defective prints from being shipped to the customer involve multiple inspection and added costs.
- Reduces the product margin.
- Hence, it is of utmost importance to study the various plausible factors that can affect print defects.

Methodology

- Selection of Gravure Process Variables
- Layout Design and Cylinder Preparation
- Baseline Identification
- Design of Experiments
- Analysis
- Identifying the significant factors and optimal settings
- Verification of optimal settings
- Development and Validation of Model

Methodology

Layout Design

- A monotone layout comprising of a skin tone, solid patches, step wedge, logo and surface/reverse text.
- Electronic Engraving with 70 and 80 lpcm with an opening of 178 µm and 139 µm.

Methodology

Baseline Identification

- Production Runs: 70 lpcm, 19 sec, 1.667 m/s, 3.5 kg/cm² with ESA OFF for few days on a pilot gravure press.
- Sample Size: 10 and 25 sheets for mottle and dot skips.
- Baseline for Mottle and Dot Skips: 0.789 and 0.68.
- Target: To minimize from the baseline.

Methodology

- The samples were scanned at 600 ppi by Verity IA Print Target v3 software.
- AOI of 70x55 mm analyzed through SFDA algorithm to calculate mottle.
- Dot skips was measured at 30% patch of the step wedge (8 mm x 8 mm).

3.2 - Visible Mottle

2 Beflectivity: 13

Methodology

• A general full factorial design with 54 runs and 2 replicates.

S. No.	Variables	Unit	Levels			
			Low	Mid	High	
1	Line Screen	lpcm	70	-	80	
2	Viscosity	sec.	17	19	21	
3	Speed	m/s.	1.333	1.667	2.0	
4	ESA Current	mA	0.4	0.7	1.0	

Methodology: Analysis_Mottle

All factors show significance in minimizing solid mottle.

ESA OFF

ESA ON

Methodology: Analysis_Mottle

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Regression	7	4.477	4.477	0.639	143.788	0.000
Line Screen (lpcm)	1	0.606	0.297	0.297	66.882	0.000
Viscosity (sec)	1	2.030	0.069	0.069	15.575	0.000
Current (mA)	1	0.889	0.037	0.037	8.245	0.004
Speed (m/s)	1	0.814	0.045	0.045	10.222	0.002
Line Screen* Current	1	0.093	0.093	0.093	20.977	0.000
Viscosity*Current	1	0.026	0.026	0.026	5.896	0.017
Viscosity*Speed	1	0.018	0.018	0.018	4.187	0.043
Error	100	0.444	0.444	0.004		
Lack of Fit	46	0.255	0.255	0.005	1.586	0.052
Pure Error	54	0.189	0.189	0.004		
Total	107	4.922				
P. V. G's College of Engineering & Technology. Pune. INDIA						

Methodology: Analysis_Mottle

Summary of Model

S = 0.0666951 R-Sq = 90.96 % R-Sq(adj) = 90.33 % PRESS = 0.522404 R-Sq(pred) = 89.39%

Regression Model

Solid Mottle (Index) = 5.94133 - 0.0317815 Line Screen (Ipcm) - 0.105911 Viscosity (sec) -1.43016 Current (mA) - 0.879981 Speed (m/s) + 0.024 Line Screen (Ipcm)*Current (mA) -0.0389583 Viscosity (sec)*Current (mA) + 0.0295341 Viscosity (sec)*Speed (m/s)

The residuals are normally distributed.

Methodology: Analysis_Mottle

Interactions:

Current with Line screen and Viscosity with Speed.

Best Settings: 80 lpcm, 21 sec, 1 mA and 2.0 m/s

Methodology: Analysis_Dot Skips

Test and Confidence Interval (CI) for one Proportion

Test of p = 0.05 vs p < 0.05

Sample	X	N	Sample p	95% Upper Bound	Exact P-Value	
1	1	108	0.009	0.043	0.026	

- The p-value (0.026) depicts that 97.4% of the data from 108 runs shall exhibit no dot skips for a predetermined 95% confidence interval (CI).
- As the p-value < 0.05, hence the null hypothesis (p = 0.05) is rejected.

P. V. G's College of Engineering & Technology, Pune, INDIA

Methodology: Verification

 The best settings (80 lpcm, 21 sec, 2.0 m/s and 1 mA) was confirmed by conducting a press run.

Trails	Solid Mottle	Std. Dev.	Dot Skips/Sheet	Std. Dev.
Production Run	0.789	0.1534	0.68	0.8397
Verification Run	0.288	0.053	0.04	0.2

- A significant improvement is evident from production run to verification run in solid mottle and dot skips.
- The best settings revealed from the analysis showed minimization of solid mottle and dot skips by 64% and 94% on shrink PVC film.

Methodology: Verification

Methodology: Validation of Model

The model developed was validated by comparing the mottle calculated from experimental data and mottle predicted from the regression equation.

A correlation coefficient of **0.9002** for mottle prediction justifies the prediction ability of the model.

Conclusion

- Optimization of the gravure process parameters itself has a solution to reduction in losses and wastage to a greater extent.
- The analysis revealed line screen, current and viscosity as the most influential factor in minimizing the mottle.
- The print mottle was minimized by 64% and dot skips by 94%.
- Regression Model showed a correlation coefficient of **90.02%**.
- Minimization of defects helps in controlling wastage and avoidable environmental damage.

Acknowledgements

- P. V. G's COLLEGE OF ENGINEERING & TECHNOLOGY, PUNE
- ENULEC GMBH, GERMANY
- ROSSINI, ITALY
- OMNOVA SOLUTIONS INC, U.S.A
- MANISH PACKAGING PVT. LTD., BARODA
- ACUPRINT SYSTEMS, MUMBAI
- FLINT GROUP, VADODARA

