

48th Conference of the International Circle

of Educational Institutes for Graphic Arts Technology and Management

29 May to 2 June 2016

WATER-BASED FLEXOGRAPHIC LAMINATION INKS DISSERTATION

Aida Michailidou, Stamatina Theohari and Diana Tsimi

Introduction 1/2

- Environmental issues
 - (directives-legislations)
- Water-based inks as an eco-efficient printing solution (according to BASF calculation tables)
- Lamination inks application areas

Introduction 2/2

- Physical properties of liquid inks (specifications - quality control)
- Description and analysis of laboratory tests
- □ Conclusions

Environmental issues

directives-legislations

"The Solvent Emissions Directive" (SED)

- invest in incineration equipment
- substitute approximately 75 % of its solvent-based inks with solvent-free or low-solvent alternatives
- □ ATEX
 - draw up an explosion protection document
 - take adequate protection measures and
 - provide adequately safe equipment
- "Integrated Pollution Prevention and Control Directive" (IPPC)
 - have a comprehensive environmental permit
 - apply "Best Available Techniques" (BAT).

Water-based inks as an alternative solution for solvent-based inks 1/2

- Applying 75 to 80 % water-based inks and other solventfree products is sufficient to benefit from this advantage in most EU member states.
- Water-based inks might be an alternative solution for solvent-based inks when it comes to legislations

Water-based inks as an alternative solution for solvent-based inks 2/2

Total environmental costs

Total ink-related costs			incinerator; capital	
	Solvent-based inks [k€/yr]	Water-based inks [k€/yr]	incinerator; operational	
ink	437.4	480.3	ink waste disposal (k€)	
solvent	80.0	6.4	waste water treatment; capital	
total ink-related costs	517.4	486.7	waste water treatment; operational	

Table 1:"Total ink-related costs"

total environmental costs

Table 2:"Total environmental

costs"

Solvent-based

inks

[k€/yr]

128.0

40.2

1.7

1.6

1.3

172.9

Water-based

inks

[k€/yr]

0.0

0.0

4.8

6.4

5.2

16.4

*"BASF has developed a digital cost calculation model summarizing printing-related expenses for flexible packaging converters in cooperation with Paul Verspoor of Sitmae Consultancy". web_EDC_1010_e_BR_FLX_Line.pdf./P:10

Lamination inks application areas

Reverse Print OPP Low-duty lamination

Reverse Print OPP, PET Medium-duty lamination

Reverse Print Nylon, PET Heavy-duty lamination

The aim of the study

To develop water-based flexographic lamination inks (CMYK), with properties such as:

- Adhesion to PP substrate (ASTM D3359)
- Drying rate (sec) (internal standard)
- Performance of printed inks (on a substrate leneta 3NT-33)
- Blocking set / off resistance (internal method)
- Lamination bond strength (DIN 53357)

Specifications - Quality control 1/3

- Laboratory tests are clearly stated in Regulations and directives
- The mechanical equipment used are calibrated and all of the test procedure were caried out strictly according to specifications and provisions

Specifications - Quality control 2/3

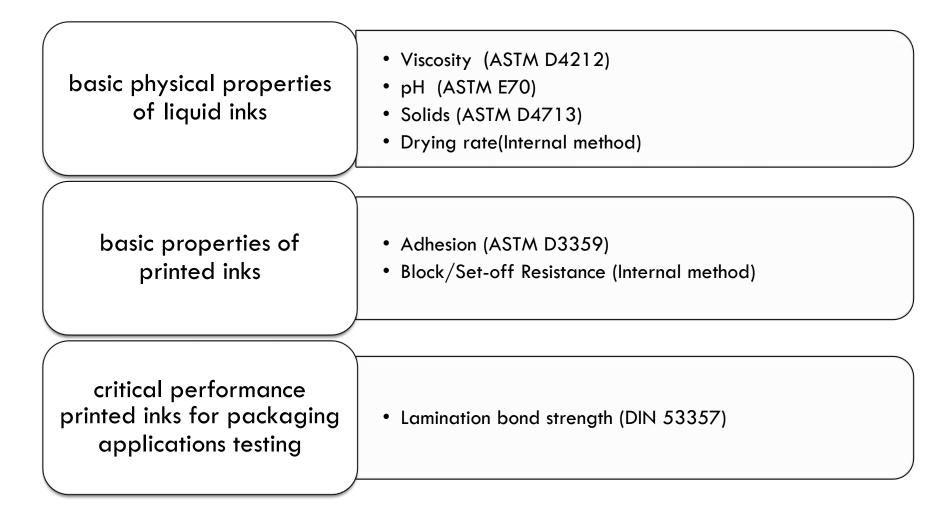
The most active standardization

organizations in the paint sector are:

ASTM

(International standards organization)

BSI


(British Standards Institution)

(German institute for standardization)

AFNOR

(French national organization for standardization)

Specifications - Quality control 3/3

Description and analysis of laboratory research. Necessary equipment

□ Zahn Cup No2 (dip type cup)

12

- □ K Control Coater, K Bar No 1 (wet film deposit 6µm)
- □ Heat seal testing machine (Brugger HSG-C)
- □ Tensile strength tester (Instron 5543)
- □ Balance precision 0.01 gr

Description and analysis of laboratory research. Consumables

- White polyethylene
- □ 300ml plastic containers with lids
- □ Tongue depressors
- Petri dishes
- Pipettes
- □ Scotch 3M

Description and analysis of laboratory research. Raw materials

- Pigment concentrate
- Self-cross linking acrylic emulsion
- Self-cross linking acrylic copolymer solution
- Polyurethane dispersion for lamination ink formulation
- Defoamer emulsion
- Surfactant
- Water
- Two component solvent-free adhesive

Description and analysis of laboratory research. Underwork

- Development of a water-based lamination ink system (summarized in four laboratory tests)
- Printing of a four-color (CMYK) water-based lamination ink system
- Lamination of printed samples (internal method)
- Recording the results of laboratory tests

Description and analysis of laboratory research. Presentation of the test results (table 1)

	pigment concentrate self-cross linking acrylic emulsion water defoamer emulsion surfactant	pigment concentrate polyurethane dispersion for lamination ink formulation water defoamer emulsion surfactant	pigment concentrate polyurethane dispersion for lamination ink formulation self-cross linking acrylic emulsion defoamer emulsion	pigment concentrate self-cross linking acrylic copolymer solution self-cross linking acrylic emulsion defoamer emulsion
Measurements	1 st test	2 nd test	3 rd test	4 th test
Viscosity Zahn Cup No2 (ASTM D4212)	23"	29"	33″	35″
. ,	0.05		2	•

(ASTM D4212)					
рН	8.25	8.5	9	8	
(ASTM E70)					
Adhesion	80%	10%	10-90%	90%	
(ASTM D3359)					
Lamination bond	0.6	1.5	0.7	2.5	
strength (DIN53357)					

Lamination bond strength in N/15mm. OPP//OPP

16

Description and analysis of laboratory research. Presentation of the test results (table 2)

Internal methods descriptions: 1. Dilution: flexographic inks 25sec	Measurements	Viscosity Zahn Cup No2 (ASTM D4212)	рН (ASTM E70)	Dilution 1(water)	Solids (ASTM D4713)	Adhesion (ASTM D3359)	Drying rate 2(Internal method)	Block/Set-off Resistance ₃(Internal method)
(Zahn Cup No2)	Cyan	35″	8.5-9.1	6%	40%	90%	90"-115"	ОК
2.Drying rate conditions: Printing on	Magenta	30"	8.8-9.5	5%	23%	90%	90"-115"	ОК
white polyethylene/K Bar 2.	Yellow	28"	8.5-9.1	3%	30%	90%	90"-115"	ОК
3.Block/Set-off conditions:	Black	33"	8.5-9.1	6%	24%	90%	90"-115"	ОК
60°C/780N/30min.	White	33"	8.5-9.1	5%	37%	90%	90"-115"	ОК

Table 4:"Final test's measurements"

Description and analysis of laboratory research. Presentation of the test results (table 3)

	Measurements	Lamination bond strength (DIN53357)	Lamination bond strength + white (DIN53357)
Water –	Cyan	2.15	1.9
based	Magenta	2.5	2
lamination	Yellow	2	1.9
ink system	Black	2.1	1.5
	White	2.5	-

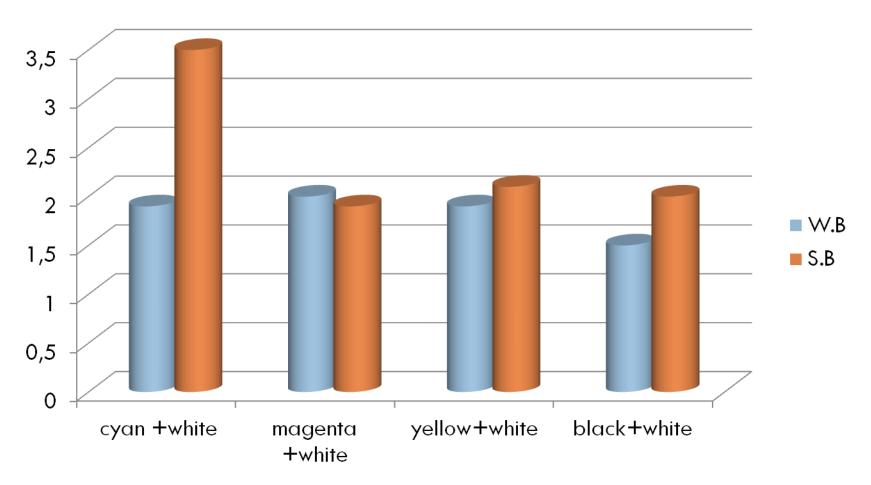
Table 5:" Lamination bond strength (CMYK+W) for W.B "

Measurements Lamination bond strength + Lamination bond strength (DIN53357) white (DIN53357) Cyan 3.4 3.5 3.1 Magenta 1.9 Yellow 2 2.1 Black 3.4 2 White 3.5

Adhesive: solvent free, 2.2 gsm dry

OPP//OPP

Lamination bond strength in N/15mm.


Solvent – based ink

Flexoprop FX(reverse printing lamination)

Table 6:" Lamination bond strength (CMYK+W) for S.B "

Description and analysis of laboratory research. Presentation of the test results (graph)

19

Graph:"Lamination bond strength (CMYK+W) for water and solvent based inks"

Print

20

Solvent based

Water based

Solvent based

Water based

Solvent based

Solvent based

Water based

Conclusions

- The results indicate that in general lines the examined water-based inks gave good results regarding print quality
- Water-based inks showed a good adhesion to the substrate, so they withstand the mechanical stresses during the printing process.

Conclusions

- Weak points were observed that need further investigation and improvement in order to match performance requirements and market demands
- Slow drying rate that in turns requires a lot of energy that affects speed of print production and costs
- Finally, printing under usual processing conditions is required in order to get a full knowledge of the strengths and weaknesses of the examined water-based inks, evaluating the printing effect and correcting any technical issues

23 Acknowledgements

We acknowledge DRUCKFARBEN Hellas S.A. for the financial support.

24

I would like to thank my colleagues and professors for their significant contribution and support Prof. Dr. Theohari Stamatina TEI of Athens Prof. Dr. Tsimi Diana TEI of Athens Mr. Mantis Dimitris DFH Mr. Apostolidis Byron DFH Mrs. Chatzopoulou Christine DFH Mr. Kouvaras Thanos DFH Mr. Giannakis Vasilis DFH

25 **References**

"Guidance on VOC Substitution and Reduction for Activities Covered by the VOC Solvents Emissions Directive (Directive 1999/13/EC) " / European Commission 2009.

"MANAGEMENT OF AQUEOUS WASTE FROM WATER-BASED FLEXOGRAPHIC PRINTING PROCESSES " / By Doreen M. Monteleone, Ph.D. Flexographic Technical Association / PNEAC

"WATER BASED INKS FOR FLEXOGRAPHIC PRINTING " / By Fred Shapiro/ PNEAC

"Good prospects from every perspective" / Joncryl® FLX Line – water-based technology for medium duty film printing

THANK YOU FOR YOUR ATTENTION

QUESTIONS?